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Abstract

We conducted a fundamental study on geological and rock detection via drone-based hyperspectral 

imaging on various types of small rock samples and interpreted the obtained information to compare 

and classify rocks. Further, we performed hyperspectral imaging on ten rocks, and compared the peak 

data value and reflectance of rocks. Results showed a difference in the reflectance and data value of 

the rocks, indicating that the rock colors and minerals vary or the reflectance is different owing to the 

luster of the surface. Among the rocks, limestone used for hyperspectral imaging is grayish white, 

inverted rock contains various sizes and colors in the dark red matrix, and granite comprises colorless 

minerals, such as white, black, gray, and colored minerals, resulting in a difference in reflectance. The 

reflectance of the visible ray range in ten rocks was 16.00~85.78%, in the near infrared ray range, the 

average reflectance was 23.94~86.43%, the lowest in basalt and highest in marble in both cases. This 

is because of the pores in basalt, which caused the difference in reflectance.
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Recently, research using hyperspectral images has been actively conducted in various 

fields. With the miniaturization of hyperspectral sensors, mounting drones and obtaining 

high spectral resolution and continuous band wavelength and studying specific spectral 

characteristics for targets has become possible.

Hyperspectral images consist of more than 200 consecutive bands for spectral wave-

length regions. Furthermore, the spectroscopic information of the target is expressed 

more similarly, enabling more detailed analysis compared to conventional multispectral 

images (van der Meer, 2003; Kim et al., 2010; Rasti et al., 2018). The complete pro-

perties of the surface material can be acquired from band to band, it is useful to analyze 

indicator properties that are difficult to detect using multispectral images (Goetz, 1991; 

Shaw and Burke, 2003; Heo et al., 2010; Lowe et al., 2017). Therefore, various appli-

cations are being explored in agriculture, environment, and biology as well as in the 

geological fields (Gowen et al., 2007; Brewer et al., 2008; Akbari et al., 2010).

Previous studies include the study of hydrothermal alteration mapping using Airborne 
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Visible Infrared Imaging Spectrometer (AVIRIS) hyperspectral data, the analysis and classification of metamorphic 

rocks using reflectance spectra of hyperspectral data and the study of compositional mineral distribution using thermal 

infrared hyperspectral scanners (Crósta et al., 1998; Longhi et al., 2001; Kirkland et al., 2002). Furthermore, image 

classification and classification of urban areas were performed using high-resolution aerial hyperspectral images and 

used for urban cladding classification and soil contamination and evaluation (Herold et al., 2003; Mars and Crowley, 

2003; Benediktsson et al., 2005; Choe et al., 2008). Moreover, a study was conducted to develop a rock characteristic 

cross sectional schematic of contact metamorphic aureole using spectroscopic analysis method, and a study regarding 

spectroscopic information analysis of unclear geological outcrop was also published (van der Meer and Kato, 2002; van 

der Meer, 2003).

Recently, studies regarding the mapping of ore with ultramafic rocks as country rocks using hyperspectral images and 

automatic mapping of rocks using hyperspectral data have been published (Rogge et al., 2014; Kumar et al., 2020). 

Hyperspectral images were used for field investigation of cladding degree and target detection on the surface of the 

earth (Manolakis and Shaw, 2002; Mhanolakis et al., 2003). In addition, studies have been conducted to analyze the 

composition of topsoil in the soil field, and soil composition analysis via visible and near infrared ray is efficient and 

non-destructive, which is used in various ways (Srodon et al., 2001; Brown et al., 2006; Nocita et al., 2013). A study 

regarding the analysis of geological and minerals using hyperspectral equipment was also conducted (Boesche et al., 

2015; Koerting et al., 2015; Rogass et al., 2017; Krupnik and Khan, 2019, 2020). In particular, it is being used to 

investigate and map mineral resources and spectral libraries via image analysis (Thompson et al., 2013; Laakso et al., 

2015; Feng et al., 2018; Graham et al., 2018; Chattoraj et al., 2020).

However, most of the geological and rock detection studies were conducted in specific areas on rocks using ground- 

based hyperspectral images, possibly owing to the difficulty of obtaining hyperspectral imaging data for large areas. In 

addition, because existing spectral sensors require considerable weight and storage space, only point-by-point analysis 

is possible and monitoring large areas is challenging.

Most rocks have different conditions and physicochemical properties, and their characteristics of absorbing and 

reflecting light are different therefore, the distribution range and scale of rocks can be confirmed using rock-specific 

spectroscopic information. Thus, this work is a fundamental study of geological and rock detection using hyperspectral 

images. The aim of this study is to perform drone-based hyperspectral imaging on various kinds of small rock samples 

and to compare and classify rocks by interpreting the obtained information. Thus, hyperspectral imaging was performed 

on ten rocks and the peak data value and reflectance of rocks were compared. Moreover, the applicability of each rock 

sample was evaluated via comparison and analysis.
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Classifying rocks is the most basic process to be conducted for geological research. Information regarding geological 

and rocks distributed in the area is also essential at actual sites, such as construction and building construction. 
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However, areas that are difficult to access, such as hillsides and cliffs, cannot be directly investigated. Geological and 

rock information can be obtained using the geological maps published in the past, but detailed information is required in 

the field. Therefore, recently, remote exploration conducted using unmanned aerial vehicles, such as drones, has been 

used in areas where direct investigation is difficult.

Remote exploration can collect information relatively easily from a wide range of areas, where hyperspectral images 

can obtain information from a variety of materials not visible to the naked eye. It is very similar in spectrum but can 

distinguish materials based on spectral bands and has the advantage of extracting accurate information. Furthermore, as 

drone mounting became possible, the utilization area has expanded, enabling remote exploration to the areas that are 

difficult to access.

Therefore, the purpose of this study is to analyze the intrinsic information of rocks using hyperspectral sensor. The 

images were taken on ten rocks, and the maximum peak data value (PDV) was calculated by analyzing the values of four 

points for each rock (Figs. 1, 2). Data value calculated via image analysis indicates spectral radiance. The reflectance 

minimizes the possible error in the change of solar radiation energy using white reference with reflective characteristics 

of 99% or more and converts it to reflectance.
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The acquisition of image data using drones is affected by atmospheric absorption and reflection therefore, correction 

is necessary. However, when spectroscopic information is obtained using a hyperspectral sensor at a low altitude in the 

field the atmospheric correction was not considered in this study because the radiant luminance generated in the atmo-

sphere or energy reflected to material is rarely affected by the atmosphere.

The hyperspectral sensor mounted on the drones uses Nano-Hyperspec acquired from Headwall Photonics in the 

United States (Table 1). It has excellent spatial and spectral resolution and high signal to noise ratio, and it can obtain 

high-resolution hyperspectral images of 270 bands. Moreover, the wavelength bands required by users can be divided 

into dozens to hundreds for collecting the spectral intensity of each band (Fig. 3a).

For the drone, the Aibot X6 (two-axis gimbal) model was used, which was provided by Aibotix in Germany. It has 

a loading capability of up to 3.0 kg during flight and can obtain accurate images by wirelessly controlling the GPS 

reception and manual control (Fig. 3b). The image analysis was performed using ENVI version 5.5 of Harris Geospatial 

Solutions, enabling analysis, and information extraction of multispectral materials and hyperspectral materials, various 

images and vector format support and the existing typical image processing basic tasks.
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Wavelength range Spatial bands Spectral bands Lens Output Gimbal

400~1000 nm 640 270 17 mm, FoV 15.9° 16 bit 2 axis
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In this study, a total of ten rock samples (five sedimentary rocks, two igneous rocks, and three metamorphic rocks) 

were used for hyperspectral imaging. The ten rock samples can be divided into three groups sedimentary rocks including 
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shale, mudstone, limestone, sandstone, and conglomerate samples igneous rocks including granite and basalt samples 

and metamorphic rocks including marble, quartzite, and gneiss samples (Fig. 1). The size of rock samples is approxi-

mately 10 m, and rocks with little particle change were selected for accurate spectroscopic information analysis.

Shale is sufficiently dark red and find-grained to prevent particles from being observed with the naked eye, and the 

mudstone is clear yellow in color and granular enough to prevent particles from being observed with the naked eye. 

Shale and mudstone are formed by the deposition of mud, but the weight of mudstone is much lighter than that of shale. 

Limestone is grayish white, and sandstone is pale green and find-grained that is composed of quartz, feldspar, mica and 

hornblend. Conglomerate is a clast and dark red matrix comprising stations of various sizes and colors.

Granite is medium-grained, with more colorless mineral content than colored minerals, and basalt is dark gray and its 

particles cannot be distinguished with the naked eye, and pores of various sizes are observed. Quartzite is light gray, 

foliation is observed, gneiss is recrystallized, a little luster is observed and the foliated surface is dark gray containing a 

very small amount of leucocratic.

������������
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The data value and reflectance changes of four points in each rock were compared and analyzed with ten rocks.
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Wavelength and data value for each rock point were classified into ten rocks, and analysis showed that similar patterns 

were shown according to red, green and blue, which are characteristics of visible ray range by rock type (Table 2, Figs. 

4, 5).
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Rock type 

Point
Peak data value of 

the total mean value

Wavelength for

peak data value
a b c d

Peak data value Peak data value Peak data value Peak data value

Shale 270 222 247 207   226 610.49

Mudstone 549 513 548 505   517.5 614.96

Limestone 605 540 571 587   562.75 563.57

Sandstone 478 456 444 486   463.75 563.57

Conglomerate 245 333 308 291   288.5 565.81

Granite 332 285 358 341   320.25 570.28

Basalt 196 205 198 180   189.5 614.96

Quazite 603 530 563 548   552.75 610.49

Marble 1122 1037 1073 994 1050.5 565.81

Gneiss 217 244 213 209   212.75 561.34 
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For shale, the maximum data value range for each point was shown to be 207~270, and the maximum data value was 

calculated to be 226.00 when the average value of consensus for each wavelength of four points was applied. Most of 

them had the same color, and a gentle slope appeared in the visible ray. The maximum data value range of mudstone 

was 505~549, and the maximum data value was 517.50 when the average value was applied to each band of four points. 

The maximum data value range of limestone was 540~605, and the maximum data value was 562.75 when the average 

value was applied to each band of four points. The maximum data value range of sandstone was 444~486, and the PDV 

was 463.75 when the average value was applied to each band of four points. The data values of each wavelength for four 

points were similar, and the PDV range was narrow. The maximum data value range of conglomerate was 245~333, and 

the maximum data value was 288.50 when the average value was applied to each band of four points. Similar to the case 

of shale, the data value range of four points was in the range of 500~700-nm wavelength.

The maximum data value range of granite was 285~358, and the maximum data value was 320.25 when the average 

value was applied to each band of four points. Three points showed very similar values, but one point showed a 

difference in data value, and it is concluded that this difference is because of the presence or absence of particles in the 

rock. The maximum data value range of basalt was 180~205, and the maximum data value was 189.50 when the average 

value was applied to each band of four points. In the graph, four points showed very similar values at most wavelengths 

and the slope was very gentle. The maximum data value range of quartzite was 530~603, and the maximum data value 

was 552.75 when the average value was applied to each band of four points. At 450~600-nm wavelengths, the data 

value range of the four points became wider and the gap difference appeared between points. The maximum data value 

range of marble was 994~1122, and the maximum data value was 1050.50 when the average value was applied to each 

band of four points. Among the ten rocks, data value was the highest and the band value difference of each point by 

wavelength was also large. The maximum data value range of gneiss was 209~244 and the maximum data value was 

212.75 when the average value was applied to each band of four points. The four points showed values similar to basalt 
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at most wavelengths, and the slope was very gentle.

The analysis of the graph showed that the data value of marble was the highest among ten rocks and there was a 

difference in wavelengths between mudstone, limestone, sandstone, conglomerate, granite and quartzite however, there 

was a difference in data values according to the rock type. In particular, the range of wavelengths was found to be wider 

with increasing data value in the case of mudstone compared with other rocks. The data values as well as patterns of 

shale, basalt, and gneiss with low data values were similar, making it difficult to distinguish them but the difference in 

the data values was shown in green and red areas of 500~700 nm. Fig. 6 compares the wavelength of the PDV by rock 

with the PDV and shows that the wavelength of the PDV is quite similar despite a difference in the PDV, which is 

intrinsic information by rock.

��������"������������������� ��������������������������	
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The reflectance of ten rocks was analyzed by comparing the data value of ten rocks with the white reference with the 

reflectance of 99%. The white references were set next to the rock for direct comparison with the rock data value, and 

the reflectance was calculated by comparing the data values (radiance) of the region (each rock region) with the 

standard white plates as shown in Eq. (1).

R = Vtarget/Vreference (1)

where, Vtarget denotes the data value of target and Vreference denotes the data value of reference (white reference).

Fig. 7 is a graph showing the reflectance of four points analyzed within each rock by ten rocks, and Fig. 8 is a graph 

showing the average reflectance of each rock. The reflectance of the rocks was generally varied by rock in the visible 

ray wavelength range of 400~700 nm, and the near infrared ray range of 700 nm or more showed a gradual increase in 

all ten rocks.
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The pattern analysis of the graph showed that shale and conglomerate increased moderately in the visible ray 

wavelength range and limestone remained at a certain level mudstone is relatively steep. In addition, there are irregular 

patterns. Sandstone shows a pattern that gradually increases and then decreases. Granite, basalt, and gneiss show a 

pattern that decreases to approximately 500 nm wavelength and then remains at a certain level. Quartzite increases to 

approximately 600 nm wavelengths, and marble increases to approximately 500 nm wavelengths and then remained at 

a certain level (Figs. 7, 8).

In the visible ray range, the reflectance range of four points in limestone, conglomerate, granite, quartzite, and marble 

is relatively wider than that in shale, mudstone, sandstone, basalt, and gneiss, or there is an irregular gap between each 

point (Fig. 7). This suggests that the reflectance range is widened owing to the various colors of the matrix and minerals 

forming the rock or the luster of the surface. Among the rocks used in hyperspectral imaging, limestone is grayish white 

and conglomerate contains dark red matrixes with various sizes and colors. Because granite is composed of colorless 

minerals such as white, black, and gray, the range of reflectance of four points is relatively wider than shale, mudstone, 

sandstone, basalt, and gneiss. Furthermore, quartzite and marble are uniformly colored but have distinct luster, so the 

reflectance range of the four points is interpreted to be relatively wider than shale, mudstone, sandstone, basalt, and 

gneiss.

�������	������
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In this study, wavelengths were divided into visible ray and near infrared ray ranges, and visible rays were divided 

into blue, green, and red light to compare the reflectance of each range (Table 3). For each wavelength of visible ray 

(blue, green, and red) 45 reflectance values and 89 reflectance values were used for near infrared rays.
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The average reflectance of visible ray range in ten rocks was 16.00~85.78%, the lowest in basalt and the highest in 

marble. In the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in basalt and the highest in 

marble (Table 3). In comparison based on wavelengths in visible ray, basalt was the lowest in blue, red, and green light, 

and marble was the highest.
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Rock type

Reflectance (%)

Visible ray (nm)
Near infrared ray

(700~900 nm)
Blue

(400~499)

Green

(500~599)

Red

(600~699)
Average

Shale 17.90 17.87 20.45 18.74 28.01

Mudstone 29.47 38.54 47.45 38.49 56.82

Limestone 47.68 48.59 47.87 48.05 49.47

Sandstone 35.51 38.78 35.80 36.70 37.49

Conglomerate 24.21 24.25 24.67 24.38 29.04

Granite 30.54 27.43 27.03 28.33 33.87

Basalt 16.17 15.46 16.27 16.00 23.94

Quazite 38.27 45.08 46.74 43.36 48.06

Marble 78.46 89.48 89.40 85.78 86.43

Gneiss 19.24 17.78 18.22 18.41 24.15

The difference in reflectance was shown to be different according to the color of the particles and components 

constituting the rock. Among the rocks, basalt and gneiss have similar rock gray, and the maximum data value and 

reflectance data show that basalt was the lowest among the ten rocks with lower value than gneiss. In the case of basalt, 

a volcanic rock, there is a pore (up to 5~10 mm) formed by the cooling of the lava, which can be interpreted as reflecting 

less light than the gneiss (a metamorphic rock) without pores, resulting in a lower data value (radiance).

���	���
���

This research on rock spectroscopic information analysis using hyperspectral images aims to perform drone-based 

hyperspectral imaging on various types of rock samples and compare and classify rocks by analyzing the data obtained. 

For this purpose, drone-based hyperspectral imaging was performed for ten rocks, and PDV and reflectance, which are 

intrinsic information of rock, were obtained and compared.

The results of the study showed that there was a difference in the data value and reflectance by rock type, suggesting 

that the color of the rocks and minerals is varied or the reflectance is different owing to the luster of the surface. 

Limestone, among the rocks used for hyperspectral imaging, is grayish white, conglomerate contains various sizes and 

colors in the dark red matrix, and granite is composed of colorless minerals such as white, black, gray, and colored 

minerals, resulting in a difference in reflectance. In addition, quartzite, and marble are uniformly colored but have 
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distinct luster therefore, the reflectance range of the four points is interpreted to be relatively wider than shale, mudstone, 

sandstone, basalt, and gneiss. The average reflectance of visible ray range in ten rocks was 16.00~85.78%, the lowest in 

basalt and the highest in marble. In the near infrared ray range, the average reflectance was 23.94~86.43%, the lowest in 

basalt and the highest in marble. This is due to the presence of pores in basalt, which possibly caused a difference in 

reflectance.

Currently, studies for using hyperspectral images for classification and detection of rocks are in the beginning stage, 

and notably, few studies have been conducted on drone-based hyperspectral image analysis. Therefore, the intrinsic 

information of rocks obtained through this study will be fully utilized as a basic data for future geological investigation 

and detection of rocks in extensive areas.
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