• Title/Summary/Keyword: Information matrix

Search Result 3,491, Processing Time 0.03 seconds

The multidimensional subsampling of reverse jacket matrix of wighted hadamard transform for IMT2000 (IMT2000을 위한 하중 hadamard 변환의 다차원 reverse jacket 매트릭스의 서브샘플링)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2512-2520
    • /
    • 1997
  • The classes of Reverse Jacket matrix [RJ]$_{N}$ and the corresponding Restclass Reverse Jacket matrix ([RRJ]$_{N}$) are defined;the main property of [RJ]$_{N}$ is that the inverse matrices of them can be obtained very easily and have a special structure. [RJ]$_{N}$ is derived from the weighted hadamard Transform corresponding to hadamard matrix [H]$_{N}$ and a basic symmertric matrix D. the classes of [RJ]$_{2}$ can be used as a generalize Quincunx subsampling matrix and serveral polygonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method for {RJ]$_{N}$. We have deduced a new orthorgonal matrix $M_{1}$.mem.[RRJ]$_{N}$ from a nonorthogonal matrix $M_{O}$.mem.[RJ]$_{N}$. These matrices can be used to develop efficient algorithms in IMT2000 signal processing, multidimensional subsampling, spectrum analyzers, and signal screamblers, as well as in speech and image signal processing.gnal processing.g.

  • PDF

A Study on Beam Error Method of Coherent Interference Signal Estimation using Optimum Covariance Weight Vector (최적 공분산 가중 벡터를 이용한 상관성 간섭 신호 추정의 빔 지향 오차)

  • Cho, Sung Kuk;Lee, Jun Dong;Jeon, Byung Kook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.53-61
    • /
    • 2014
  • In this paper, we proposed covariance weight matrix using SPT matrix in order to accurate target estimation. We have estimated a target using modified covariance matrix and beam steering error method. We have minimized beam steering error in order to estimation desired a target. This method obtain optimum covariance weight using modified SPT matrix. This paper of proposal method is showed good performance than general method. We updated a weight of covariance matrix using modified SPT matrix. We obtain optimum covariance matrix weight to application beam steering error method in order to beam steering toward desired target. Through simulation, we showed that compare proposal method with general method. It have improved resolution of estimation target to good performance more proposed method than general method.

A Study on Multi-Signal DOA Estimation in Fading Channels

  • Lee Kwan-Houng;Song Woo-Young
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.3
    • /
    • pp.115-118
    • /
    • 2005
  • In this study, the proposed algorithm is a correlativity signal in a mobile wireless channel that has estimated the direction of arrival. The proposed algorithm applied the space average method in a MUSIC algorithm. The diagonal matrix of the space average method was changed to inverse the matrix and to obtain a new signal correlation matrix. The existing algorithm was analyzed and compared by applying a proposed signal correlation matrix to estimate the direction of arrival in a MUSIC algorithm. The experiment resulted in a proposed algorithm with a min-norm method resolution at more than $5^{\circ}$. It improved more than $2^{\circ}$ in a MUSIC algorithm.

Refinement of Document Clustering by Using NMF

  • Shinnou, Hiroyuki;Sasaki, Minoru
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.430-439
    • /
    • 2007
  • In this paper, we use non-negative matrix factorization (NMF) to refine the document clustering results. NMF is a dimensional reduction method and effective for document clustering, because a term-document matrix is high-dimensional and sparse. The initial matrix of the NMF algorithm is regarded as a clustering result, therefore we can use NMF as a refinement method. First we perform min-max cut (Mcut), which is a powerful spectral clustering method, and then refine the result via NMF. Finally we should obtain an accurate clustering result. However, NMF often fails to improve the given clustering result. To overcome this problem, we use the Mcut object function to stop the iteration of NMF.

  • PDF

Hybrid Watermarking Scheme using a Data Matrix and Cryptograph Key (데이터 매트릭스와 암호 키를 이용한 하이브리드 워터마킹 기법)

  • Jeon, Seong-Goo;Kim, Myung-Dong;Kim, Il-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.423-428
    • /
    • 2006
  • In this paper we propose a new watermarking scheme using a data matrix and a cryptograph key. The data matrix of two-dimensional bar codes is a new technology capable of holding relatively large amounts of data compared to the conventional one-dimensional bar code. And a cryptograph key is used to prevent a watermark from malicious attacks. We encoded the copyright information into a data matrix bar code, and it was spread as a pseudo random pattern using the owner key. The experimental results show that the proposed scheme has good quality and is robust to various attacks, such as JPEG compression, filtering and resizing. Also the performance of the proposed scheme is verified by comparing the copyright information with the information which is extracted from the watermark.

Development of an Informetric Analysis System KnowledgeMatrix (계량정보분석시스템 KnowledgeMatrix 개발)

  • Lee, Bangrae;Yeo, Woon Dong;Lee, June Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.167-171
    • /
    • 2007
  • Application areas of Knowledge Discovery in Database (KDD) have been expanded into many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has recently fully utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not cheap, korean language process not available, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information (KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. Knowledge Matrix main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. KnowledgeMatrix show better performances and offer more various functions than extant systems.

  • PDF

Research on Covert Communication Technology Based on Matrix Decomposition of Digital Currency Transaction Amount

  • Lejun Zhang;Bo Zhang;Ran Guo;Zhujun Wang;Guopeng Wang;Jing Qiu;Shen Su;Yuan Liu;Guangxia Xu;Zhihong Tian;Sergey Gataullin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1020-1041
    • /
    • 2024
  • With the development of covert communication technologies, the number of covert communication technologies using blockchain as a carrier is increasing. However, using the transaction amount of digital currency as a carrier for covert communication has problems such as low embedding rate, large consumption of transaction amount, and easy detection. In this paper, firstly, by experimentally analyzing the distribution of bitcoin transaction amounts, we determine the most suitable range of amounts for matrix decomposition. Secondly, we design a novel matrix decomposition method that can successfully decompose a large amount matrix into two small amount matrices and utilize the elements in the small amount matrices for covert communication. Finally, we analyze the feasibility of the novel matrix decomposition method in this scheme in detail from four aspects, and verify it by experimental comparison, which proves that our scheme not only improves the embedding rate and reduces the consumption of transaction amount, but also has a certain degree of resistance to detection.

A note on the geometric structure of the t-distribution

  • Cho, Bong-Sik;Jung, Sun-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.575-580
    • /
    • 2010
  • The Fisher information matrix plays a significant role in statistical inference in connection with estimation and properties of variance of estimators. In this paper, the parameter space of the t-distribution using its Fisher's matrix is de ned. The ${\alpha}$-scalar curvatures to parameter space are calculated.

Derivation of the Fisher information matrix for 3-parameters Weibull distribution using mathematica (매스매티카를 이용하여 3-모수를 갖는 와이블분포에 대한 피셔 정보행렬의 유도)

  • Yang, Ji-Eun;Baek, Hoh-Yoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Fisher information matrix plays an important role in statistical inference of unknown parameters. Especially, it is used in objective Bayesian inference which derives to the posterior distribution using a noninformative prior distribution and is an example of metric functions in geometry. The more parameters for estimating in a distribution are, the more complicate derivation of the Fisher information matrix for the distribution is. In this paper, we derive to the Fisher information matrix for 3-parameters Weibull distribution which is used in reliability theory using Mathematica programs.

  • PDF

Incremental Multi-classification by Least Squares Support Vector Machine

  • Oh, Kwang-Sik;Shim, Joo-Yong;Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.965-974
    • /
    • 2003
  • In this paper we propose an incremental classification of multi-class data set by LS-SVM. By encoding the output variable in the training data set appropriately, we obtain a new specific output vectors for the training data sets. Then, online LS-SVM is applied on each newly encoded output vectors. Proposed method will enable the computation cost to be reduced and the training to be performed incrementally. With the incremental formulation of an inverse matrix, the current information and new input data are used for building another new inverse matrix for the estimation of the optimal bias and lagrange multipliers. Computational difficulties of large scale matrix inversion can be avoided. Performance of proposed method are shown via numerical studies and compared with artificial neural network.

  • PDF