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Abstract

The Fisher information matrix plays a significant role in statistical inference in
connection with estimation and properties of variance of estimators. In this paper, the
parameter space of the t-distribution using its Fisher’s matrix is defined. The α -scalar
curvatures to parameter space are calculated.

Keywords: Alpha-connection, alpha-scalar curvature, Fisher information matrix, Gaus-
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1. Introduction

Rao (1945) first noticed the importance of the differential-geometrical approach and intro-
duced the Riemannian metric in a statistical manifold by using the Fisher information matrix
and calculated the geodesic distance between two distributions for various statistical models.
Since then many researchers have tried to obtain the properties of the Riemannian manifold
of a statistical model. Efron (1975) defined the statistical curvature of statistical model
and pointed out that the statistical curvature plays a fundamental role in the higher order
asymptotic theory of statistical inference. Amari (1982) introduced the α-connection and
α-curvature. Then he pointed out important roles of the exponential and mixture curvatures
and their duality in statistical inference. Amari (1985) remarked that the two dimensional
parameter space of the family of one dimensional normal distribution is a space of negative
constant curvature and studied the α -geometry of the families of the gamma, Gaussian,
Mckey bivariate gamma and the Freund bivariate exponential. Recently, Adbel-All et al.
(2003), Kass (1989), Kass and Vos (1997), Murray and Rice (1993) studied the probability
density function from the viewpoint of information geometry and use the geometric metrics
to give a new description to the statistical distribution. Arwini and Dodson (2007) studied
the α -geometry of the Weibull manifold. In this paper, we find the α-connection and α
-scalar curvature of the t-distribution.
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2. Geometry of parameter spaces

Let S = {p(x, θ)|x : random variable, θ = (θ1, · · · , θn) ∈ Rn} be a family of probability
distributions. The family S is regarded as an n-dimensional manifold having θ as a coordi-
nate system. Rao (1945) has proved that when the Fisher information matrixG(θ) = (gij(θ))

gij(θ) = −E [∂i∂j l] . (2.1)

where E denoted to the expectation with respect to p(x, θ) and l(x, θ) = ln p(x, θ), is non-
degenerate, S is a Riemannian manifold and G(θ) plays the role of a Riemannian metric
tensor. In the following, we adapt the Einstein summation convention. The infinitesimal
distance dS between two nearby distributions p(x, θ) and p(x, θ + dθ) is defined by

dS2 = gij(θ)dθidθj .

The quantities

Γijk =
1

2
gil

(
∂gjl

∂θk
+
∂gkl

∂θj
−
∂gjk

∂θl

)
(2.2)

are called the Christoffel symbols and (gil) is the contravariant metric tensor field of the
covariant metric tensor field (gil). Then we have

Γkij = gkmΓijm, Γijm = Γkijgkm. (2.3)

The α-connection is defined by

Γ
(α)
ijk = E

[(
∂i∂j l +

1− α
2

∂il∂j l

)
∂kl

]

= Γ
(1)
ijk +

1− α
2

Tijk, (2.4)

where Tijk = E [∂il∂j l∂kl]. From Γ
(α)
ijk = Γ

(β)
ijk + Tijk(β − α)/2,

Γ
(α)
ijk = Γijk −

α

2
Tijk. (2.5)

The Riemannian curvature tensor in (S, gij) is defined by

Rsijk = Γsik,j − Γsjk,i + ΓlikΓsjl − ΓljkΓsil, (2.6)

where comma denotes the partial derivative. Putting

Rijks = Rlijkgls, (2.7)

we can write as:

Rijks +Rjkis +Rkijs = 0,

Rijks = −Rjiks = −Rijsk = Rksij .
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Thus the Ricci tensor is given as

Rik = Rjijk = Rijksg
sj . (2.8)

The scalar curvature R and the Gaussian curvature K are defined by

R = gijRij , K =
R1212

detG
. (2.9)

The α-curvature tensors R
(α)
ijkm are defined by

R
(α)
ijkm =

(
Γ
s(α)
ik,j − Γ

s(α)
jk,i

)
gsm + Γ

(α)
jrmΓ

r(α)
ik − Γ

(α)
irmΓ

r(α)
jk (2.10)

where Γ
k(α)
ij = Γ

(α)
ijmg

km. The α -scalar curvature Kα is defined by

K(α) =
1

n(n− 1)
R

(α)
ijkmg

imgjk. (2.11)

3. Geometric interpretation of student t-distribution

Let Ω be the location-scale manifold of density that has the form

Ω =

f(x) =
1

v

Γ

(
r + 1

2

)
√
πrΓ

(
r

2

)
1 +

1

r

(
x− u
v

)2
−

r + 1

2
|x ∈ R, (u, v) ∈ R×R+

 (3.1)

where u is location parameter and v is scale parameter and r is degrees of freedom. From
Cho and Baek (2006), Fisher information matrix (gij) is given by

(gij) =


r + 1

v2(r + 3)
0

0
2r

v2(r + 3)

 . (3.2)

Let z =
x− u
√
rv

. Then

1 =

∫ ∞
−∞

f(x)dx =

∫ ∞
−∞

1
√
π

Γ

(
r + 1

2

)

Γ

(
r

2

) (1 + z2)
−
r + 1

2 dz =

∫ ∞
−∞

f(z)dz.

We can calculate

E

(
1

Z2 + 1

)
=

r

r + 1
, E

(
1

(Z2 + 1)2

)
=

r(r + 2)

(r + 1)(r + 3)
. (3.3)
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Moreover

E

(
1

(Z2 + 1)3

)
=

∫ ∞
−∞

1
√
π

Γ

(
r + 1

2

)

Γ

(
r

2

) (
1 + z2

)−r + 7

2 dz

=

Γ

(
r + 1

2

)
Γ

(
3 +

r

2

)

Γ

(
r

2

)
Γ

(
3 +

r + 1

2

) =
r(r + 2)(r + 4)

(r + 1)(r + 3)(r + 5)
. (3.4)

Proposition 3.1. The α-curvature tensor of the t-distribution is given by

R
(α)
1212 = −

(r + 1)
{

(r + 5)2 − α2(r − 1)2
}

v4(r + 3)(r + 5)2
. (3.5)

Proof : From (2.2), (2.3) and (3.2)

Γ112 = Γk11gk2 =
r + 1

v3(r + 3)
, Γ121 = Γk12gk1 = −

r + 1

v3(r + 3)
,

Γ222 = Γk22gk2 = −
2r

v3(r + 3)
, Γ122 = Γ111 = 0. (3.6)

By (2.4)

T112 = E[∂1l∂1l∂2l] =
4ab2

v3

{
(2b− 1)E

[
Z4

(1 + Z2)3

]
− E

[
Z2

(1 + Z2)3

]}
,

T222 = E[(∂2l)
3] =

1

v3

{
(2b− 1)3 − 6b(2b− 1)2E

[
1

1 + Z2

]
(3.7)

+ 12b2(2b− 1)E

[
1

(1 + Z2)2

]
− 8b3E

[
1

(1 + Z2)3

]}
,

T111 = T122 = 0,

where a = 1/r and b = (r + 1)/2. From (3.3), (3.7) and partial traction decomposition

T112 =
2(r + 1)(r − 1)

v3(r + 3)(r + 5)
, T222 =

8r(r − 1)

v3(r + 3)(r + 5)
, T111 = T122 = 0. (3.8)
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By (2.5), (3.5) and (3.8)

Γ
(α)
112 = Γ112 −

α

2
T112 =

(r + 1) {(r + 5)− α(r − 1)}
v3(r + 3)(r + 5)

Γ
(α)
222 = Γ222 −

α

2
T222 =

− 2r {(r + 5) + 2α(r − 1)}
v3(r + 3)(r + 5)

Γ
(α)
121 = Γ121 −

α

2
T121 =

− (r + 1) {(r + 5) + α(r − 1)}
v3(r + 3)(r + 5)

(3.9)

Γ
(α)
111 = Γ

(α)
122 = 0.

Thus

Γ
2(α)
11 =

(r + 1) {(r + 5)− α(r − 1)}
2rv(r + 5)

Γ
1(α)
21 =

− {(r + 5) + α(r − 1)}
v(r + 5)

(3.10)

Γ
2(α)
21 = Γ

1(α)
11 = 0.

By (2.10), (3.2), (3.9) and (3.10)

R
(α)
1212 =

(
∂2Γ

s(α)
11 − ∂1Γ

s(α)
21

)
gs2 + (Γ

(α)
1r2Γ

r(α)
21 − Γ

(α)
2r2Γ

r(α)
11 )

= −
(r + 1)

{
(r + 5)2 − α2(r − 1)2

}
v4(r + 3)(r + 5)2

.

�

Theorem 3.2. The α -scalar curvature of the t-distribution is given by

K(α) = −
(r + 3)

{
(r + 5)2 − α2(r − 1)2

}
2r(r + 5)2

.

Proof : Since K(α) = (1/2)(−2R
(α)
1212g

11g22) from (2.11), we obtain the result. �

Thus if α = 0, we have the following corollary.

Corollary 3.3. The scalar curvature R and the Gaussian curvature K of the t-distribution,
are

R = −
r + 3

r
, K =

1

2
R.

Example 3.4. Metric for a single neuron (Wagenaar, 1998). A single N-input binary neuron
with output defined as follows;

y(t) = sgn[tanhβh(x) + η(t)]

with h(x) =
∑N
i=1 J

ixi + J0. In this, J i are connection weights, J0 is the external field or
bias, xi are the inputs, and η(t) is a source of uniform random noise in [−1, 1].
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4. Conclusions

It should be very important to know the shape of a statistical model in the whole set
of probability distributions. The Fisher information matrix (FIM) is the curvature of the
likelihood at the mode. The information content is large if the FIM is large, because the
likelihood is sharped peaked. we are very sure that the maximum likelihood (ML) solution
is a good estimate. If the curvature is small, then the likelihood probability distribution
is very broad. So the ML estimate is not as good because the variance is very large. A
one-parameter family of affine connections are called the α -connections. The duality be-
tween the α-connection and the α-connection together with the metric play an essential
role in this geometry. This kind of duality, having emerged from manifolds of probability
distributions, is ubiquitous, appearing in a variety of problems which might have no explicit
relation to probability theory. The notion of α-curvature serves an important role in the
asymptotic theory of statistical estimation, ancillary statistics, conditional inference and
Bartlett adjustment in the likelihood ratio test.
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