• Title/Summary/Keyword: Influent loading rate

Search Result 130, Processing Time 0.025 seconds

Nitrogen Removal using Autotrophic Microorganism in Membrane-Attached Biofilm Reactor (MABR) (Membrane-Attached Biofilm Reactor(MABR)에서의 독립영양 미생물을 이용한 질소 제거)

  • Shin, Jeong-Hoon;Sang, Byoung-In;Chung, Yun-Chul;Choung, Youn-Kyoo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.624-629
    • /
    • 2005
  • The purpose of this study is to investigate the performance of nitrogen removal using autotrophic microorganism in the Membrane-Attached Biofilm Reactor (MABR). The treatment system consists of an aerobic MABR (R1) for nitrification and an anaerobic MABR (R2) for hydrogenotrophic denitrification. Oxygen and hydrogen were supplied through the lumen of hollow-fiber membranes as electron acceptor and donor, respectively. In phase Ι, simultaneous organic carbon removal and nitrification were carried out successfully in R1. In phase II, to develop the biofilm on the hollow-fiber membrane surface and to acclimate the microbial community to autotrophic condition, R1 and R2 were operated independently. The MABRs, R1 and R2 were connected in series continuously in phase III and operated at HRT of 8 hr or 4 hr with $NH_4{^+}-N$ concentration of influent, from 150 to 200 mgN/L. The total nitrogen removal efficiency reached the maximum value of 99% at the volumetric nitrogen loading rate of $1.20kgN/m^3{\cdot}d$ in the combined MABR system with R1 and R2. The results in this study demonstrated that the combined MABR system could operate effectively for the removal of nitrogen in wastewater not containing organic materials and can be used stably as a high rate nitrogen removal technology.

Effect of HRT and Internal Recycle Ratio on Removal of Organic and Nitrogen in Swine Wastewater by Anoxic-Oxic Process Combined with Membrane (분리막이 결합된 무산소·호기 공정을 이용한 축산폐수처리에서 수리학적체류시간 및 내부반송율이 유기물 및 질소제거에 미치는 영향)

  • Whang, gye dae;Lee, bong hee;Lee, hyun duk
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.603-609
    • /
    • 2004
  • The objective of this study was to determine the optimal operation conditions in an anoxic oxic process to eliminate both organic and nitrogen matters in swine wastewater. For the purpose of this, the removal efficiency was evaluated with various HRTs and internal recycling ratio. During the whole 580 days of experiment, HRTs had been gradually decreased in an order of 20, 14, 12 and l0days, and the internal recycle ratio was kept at 20Q. So as to determine the effect of the internal recycle ratio on the nitrogen removal, the internal recycle ratio had been gradually increased from 20Q to 50Q while HRT was maintained at 12days. As a result, it was shown that the removal efficiency of organic matter was above 95% regardless of changing of HRTs. The average influent concentration of TCODcr and SCODcr were 24,854 mg/L and 18,920 mg/L, respectively. Average removal efficiency of TKN was shown to be nearly 98% when HRT was kept at 12days; however, the $NH_4{^+}-N$ concentration of effluent was shown to be increased when the loading rate of $NH_4{^+}-N$ was increased to $0.602 kgNH_4{^+}-N/m^3$-day by means of decreasing HRT to 10days. It was concluded that nitrogen loading rates should be more considered rather than organic loading rates in case of determining an optimal HRT. When gradually increasing the internal recycle ratio from 20Q to 50Q, the removal efficiency of organic matters and TKN were 96% and 98%, respectively so that no significant changes in removal efficiency was detected. However, when the internal recycle ratio was kept at 50Q, it was revealed that the $NO_3-N$ concentration of effluent seemed to drop and the average $NO_3-N$ concentration of effluent was around 52 mg/L.

Analysis of Water bady Damage at Osu Stream Using the Flow-Loading Equation and 8-Day Intervals Cumulative Flow Duration Curve (유량-부하량 관계식과 8일 간격 누적유량지속곡선을 이용한 오수천의 수체 손상도 분석)

  • Lee, Young Sung;Kim, Young Suk;Han, Sung Wook;Seo, kwon ok;Lim, chang bok;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1179-1193
    • /
    • 2018
  • The purpose of this study at water quality pollutants to propose proper management method for the Osu-A unit watershed which is the influent tributary located upstream of the Sumjin -river among the 13 unit watersheds in the Sumjin-river water system. Analyzed the correlation between flow-pollution loading and the correlation between land use type, BOD and TP items, and analyzed 8-day intervals Cumulative Flow Duration Curve (CFDC) and Load Duration Curve (LDC) to evaluate water quality damage. As a result, both BOD and TP were larger than 1 and the concentration of water pollutants increased with increasing flow. BOD was positively correlated with Urban and Field, and TP was positively correlated with Field with 0.710. As a result of the LDC, BOD was analyzed that the target water quality was achieved with the excess rate of less than 50%, and TP exceeded the target water quality by 50.1%. BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone and On the other hand, TP usually exceeded the standard value at high flow zone. Monthly BOD (April to June) and TP (May to August) exceeded the standard. Sewage Wastewater treatment and non-point pollution control is Osu-A unit watersheds are effective in improving BOD and TP.

Ensuring Stability in Accordance with the Secondary sedimentation tank Surface Loading rate Increase (장방향 이차침전지에서 이중정류벽 설치를 통한 침강속도 증대에 따른안정성 확보 분석)

  • Choi, Dongkyu;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.18 no.4
    • /
    • pp.357-362
    • /
    • 2016
  • Improvement of the solid-liquid separation efficiency in the secondary sedimentation tank of the biological treatment process, is known to be increasing effectiveness of the overall system operation. Sewage treatment plant effluent SS is composed of most organic substances. In order to reduce the SS component in the secondary sedimentation tank discharge, fine SS components constituting the heterogeneous should be increased by its own aggregation (self flocculation), so that can be deleted through their precipitation. So, it is improved through using the installation of double rectification wall in this secondary tank. In case, sewage is rapidly increased due to the daily change of the influent water, it was confirmed that suspended solids caused by the impact load are processed stably. Therefore, there is a need for a facility installation which can be its own aggregation for reduction suspended solids in secondary sedimentation tank.

Performances of Ceramic-tube and Pall-ring Upflow Anaerobic Filters Treating a Dairy Waste (세라믹튜브 및 패킹형플라스틱 여재충전 상향류식 혐기성여상에 의한 유가공 폐수처리)

  • Hur, Joon-Moo;Chang, Duk;Pae, Hyung-Suk;Kim, Soo-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • Laboratory experiments were conducted to investigate the performances of anaerobic filters packed with ceramic tube and pall-ring media treating a dairy waste. The media packing volume was 65% of effective volume of anaerobic filter. Organics removals of anaerobic filters were maintained above 80% even at an organics loading rate of $10kgCOD/m^3/d$, and this was comparable to aerobic treatment of organic wastes. Organics removals of the ceramic tube anaerobic filters were always lower than those of the pall-ring anaerobic filters due to intrinsic physical property of ceramic tube, especially lower void space which caused to clogging and entrapment of biogas, substrate transfer limitation, and irregular evolution of biogas leading to loss of solids and biomass. This was clearly observed in higher concentration of TSS in the effluent from the ceramic tube anaerobic filter despite of higher retention capacity of TSS compared with pall-ring media. Vertical distribution of organics and solids in the filters showed above 90% of organics and solids in influent were removed below 20% of reactor height, and 50% of remaining organics and solids were removed though media packing zone. Effluent quality from the anaerobic filter was heavily depended on media itself as well as suspended biomass formed below media. It is therefore concluded that the type of media played an important role in biomass accumulation arid gas-liquid-solid separation efficiency. Type of media did not affect the start-up behaviors of the anaerobic filter, and supernatant from anaerobic digested sludge showed a good performance as a seeding materials.

  • PDF

Water Treatment of Seawater Recirculating Aquaculture System by Using Three Phase Fluidized Bed Reactor (삼상 유동층 반응조를 이용한 해수 순환 여과 시설의 수처리)

  • Lee, Byung-Hun;Choi, Hyeok;Ryu, Jong-Soo
    • Journal of Aquaculture
    • /
    • v.13 no.2
    • /
    • pp.137-145
    • /
    • 2000
  • Capacity of water treatment of the three phase fluidized bed reactor as a biofilter in the seawater recirculating system was evaluated. The water treatment system consists of fluidized bed reactor for ammonia removal, cartridge filter for solid removal and ozone contactor for disinfection. Mean concentration of water quality parameters: COD, TAN, $NO_2$-N, $NO_3$-N, SS and alkalinity were 9.0, 0.22, 0.05, 20.0, 9.5 and 70.0 mg/l, respectively; the relevant values were 7.6 for pH and 3.64 NTU for turbidity. These indicate the maintenance of good water quality by the treatment system. The influent TAN loading rate in to the fluidized bed reactor ranged from 4.3 to 32.9 g/$m^3$/day, and averaged to 20 g/$m^3$/day. TAN removal efficiency of each phase of the fluidized bed reactor was 47-60%, indicating the effective ammonia removal. During operation the effluent of fluidized bed reactors also maintained the unionized ammonia nitrogen level below 0.002 mg/l.

  • PDF

Early-Year Performance of the Sihwa Constructed Wetland for Stream Water Treatment (하천수 정화를 위한 시화인공습지의 초기 수질 정화능)

  • Kwun, Soon-Kuk;Lee, Kyung-Do;Cho, Young-Hyun;Kim, Song-Bae;Cheon, Gi-Seol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.93-102
    • /
    • 2005
  • A prototype surface flow constructed wetland was built in the upstream area of Sihwa reclaimed tidal lands to improve the water quality of Lake Sihwa by treating severely polluted stream water. In this study, we monitored hydrology, macrophyte (Phragmites communis Trin,) growth, and water quality in the Banwol and Donghwa wetlands to evaluate their performance during the initial period after the completion of wetland construction, The average removal efficiency($\%$) in each wetland was relatively low compared with the performance data from the North America Wetland Treatment System Database (NADB), which mainly includes urban sewage-treatment wetlands. However, the average removal rates per unit area ($g/m^{2}/day$) were 0.72, 0.72 and 0.51 (BOD), 2,04, 2.46 and 0.70 (SS), 0.89, 0.43 and 1.09 (TN) and 0.02, 0.02 and 0.02 (TP) in the Banwol and Donghwa wetlands and NADB, respectively. The overall performance of the Banwol and Donghwa wetlands was within the expected range of the wetland system processes contributing the reduction of the pollutant load to Lake Sihwa during the initial period of wetland operation. Considering the low influent concentration, high hydraulic loading rate, and insufficient macrophyte growth since the wetland was constructed, better performance is expected if an improved operational scheme is adopted.

Reduction of Perchlorate and Nitrate by Citrobacter Amalonaticus Strain JB101 : Kinetics and the Applicability of MBR (Citrobacter Amalonaticus Strain JB101에 의한 과염소산염과 질산염의 환원 : Kinetics 및 MBR을 이용한 처리 가능성)

  • Hong, Jae-Wha;Jang, Myung-Su;Lee, Il-Su;Bae, Jae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1298-1304
    • /
    • 2005
  • This study was performed to evaluate the characteristics of the competition between two electron acceptors, perchlorate and nitrate, with Citrobacter Amalonaticus strain JB101. In addition, the applicability of membrane bioreactor(MBR) for perchlorate removal was evaluated. The maximum growth rate of strain JB101 on perchlorate and nitrate are 0.27 and 0.58 $hr^{-1}$, and maximum substrate utilization rates were 35.1 mg $ClO_4^-/g$ protein-day and 45.6 mg $NO_3^-/g$ protein-day, respectively. Nitrate was a competitive inhibitor for perchlorate, and strain JB101 prefer nitrate to perchlorate as electron acceptor. Complete removal of perchlorate could be achieved up to the surface leading rate of 4.6 g $ClO_4^-/m^2-day$ with the MBR fed with 20 mg $ClO_4^-/L$(HCMBR). When 5 mg/L of nitrate was added to the same influent, perchlorate removal efficiency decreased to 96.5%, while nitrate was completely removed. For the MBR fed with 0.7 mg/L of perchlorate (LCMBR), the maximum perchlorate removal efficiency was 100% up to the loading rate of 0.23 g $ClO_4^-/m^2-day$. Membrane fouling was found to be a problem at high leading rate for both MBRs. The acetate consumption ratio per perchlorate was $13.7{\sim}51.7\;e^-eq./e^-eq.$ in LCMBR, while the value was $2.5{\sim}3.6\;e^-eq./e^-eq.$ in HCMBR. This difference could be related to the acetate consumption with oxygen as electron acceptor. Therefore, the amount of acetate addition must be determined considering the concentrations of other electron acceptors in the influent.

Effects of Alkalinity on the Nitrification Capability of Nonwoven Fabric Filter Bioreactor (부직포 여과막 생물반응조에서 알칼리도가 질산화 성능에 미치는 영향)

  • Bae, Min-Su;Ahn, Yoon-Chan;Jang, Myung-Bae;Cho, Yun-Kyung;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.7
    • /
    • pp.783-792
    • /
    • 2007
  • To investigate the effects of alkalinity on the nitrification capability of the nonwoven fabric filter bioreactor(NFBR), an experiment was performed for 641 days at a hydraulic retention time of approximately 11 hours by changing the influent concentration of $NH_3-N$ from 54 mg/L to 1,400 mg/L and alkalinity from 43 mg/L to 10,480 mg/L. The MLSS concentration reduced from an initial value of 2,650 mg/L down to 830 mg/L, then increased up to 8,340 mg/L. Though the volumetric loading rate varied in a range of $0.120\sim3.130$ kg $NH_3-N/m^3-day$, the F/M ratio showed a narrow range of $0.067\sim0.414$ kg $NH_3-N/kg$ MLSS-day. The average nitrification efficiency at each experimental stage resulted in the range of $35.2\sim100%$, and the maximum nitrification rate was 2.970 kg $N/m^3-day$ or 0.489 g N/g MLVSS-day. The nitrifiers' fraction of the MLVSS increased up to 100% from an initial value of 7.1% and the biofilm formed on the nonwoven fabric filter showed a very low nitrifiers' fraction of mere 2.2%. The growth yield of the MLSS and the alkalinity consumption rate were computed to be 0.117 g VSS/g N removed and 7.08 g alkalinity/g $NO_x^--N$ produced, respectively. Results of the research suggest that NFBR could be an adequate process for nitrification of wastewaters with high ammonia concentrations.

Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System (인공습지시스템에서 수리학적 조건과 수질정화특성)

  • Park, Byeng-Hyen;Kim, Jae-Ok;Lee, Kwng-Sik;Joo, Gea-Jae;Lee, Sang-Joon;Nam, Gui-Sook
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.4 s.100
    • /
    • pp.285-294
    • /
    • 2002
  • The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.