Purification Characteristics and Hydraulic Conditions in an Artificial Wetland System

인공습지시스템에서 수리학적 조건과 수질정화특성

  • Park, Byeng-Hyen (Environmental management Corporation) ;
  • Kim, Jae-Ok (Rural Research Institute, Korea Agricultural & Rural Infrastructure Corporation) ;
  • Lee, Kwng-Sik (Rural Research Institute, Korea Agricultural & Rural Infrastructure Corporation) ;
  • Joo, Gea-Jae (Dept. of Biology, Pusan National University) ;
  • Lee, Sang-Joon (Dept. of Microbiology, Pusan National University) ;
  • Nam, Gui-Sook (Rural Research Institute, Korea Agricultural & Rural Infrastructure Corporation)
  • Published : 2002.12.31

Abstract

The purpose of this study was to evaluate the relationships between purification characteristics and hydraulic conditions, and to clarify the basic and essential factors required to be considered in the construction and management of artificial wetland system for the improvement of reservoir water quality. The artificial wetland system was composed of a pumping station and six sequential plants beds with five species of macrophytes: Oenanthe javanica, Acorus calamus, Zizania latifolia, Typha angustifolia, and Phragmites australis. The system was operated on free surface-flow system, and operation conditions were $3,444-4,156\; m^3/d$ of inflow rate, 0.5-2.0 hr of HRT, 0.1-0.2 m of water depth, 6.0-9.4 m/d of hydraulic loading, and relatively low nutrients concentration (0.224-2.462 mgN/L, 0.145-0.164 mgP/L) of inflow water. The mean purification efficiencies of TN ranged from 12.1% to 14.3% by showing the highest efficiency at the Phragmites australis bed, and these of TP were 6.3-9.5% by showing the similar ranges of efficiencies among all species. The mean purification efficiencies of SS and Chl-A ranged from 17.4% to 38.5% and from 12.0% to 20.2%, respectively, and the Oenanthe javanica bed showed the highest efficiency with higher concentration of influent than others. The mean purification amount per day of each pollutant were $9.8-4.1\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in BOD, $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TN, $0.085-1.821\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in TP, $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in SS and $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$ in Chl-a. The purification amount per day of TN revealed the hi링hest level at the Zizania latifolia bed, and TP showed at the Acrous calamus bed. SS and Chl-a, as particulate materials, revealed the highest purification amount per day at the Oenanthe javanica bed that was high on the whole parameters. It was estimated that the purification amount per day was increased with the high concentration of influent and shoot density of macrophytes, as was shown in the purification efficiency. Correlation coefficients between purification efficiencies and hydraulic conditions (HRT and inflow rate) were 0.016-0.731 of $R^2$ in terms of HRT, and 0.015-0.868 of $R^2$ daily inflow rate. Correlation coefficients of purification amounts per day with hydraulic conditions were 0.173-0.763 of Ra in terms of HRT, and 0.209-0.770 daily inflow rate. Among the correlation coefficients between purification efficiency and hydraulic condition, the percentages of over 0.5 range of $R^2$ were 20% in HRT and in daily inflow rate. However, the percentages of over 0.5 range of correlation coefficients ($R^2$) between purification amount per day and hydraulic conditions were 53% in HRT and 73% in daily inflow rate. The relationships between purificationamount per day and hydraulic condition were more significant than those of purifi-cation efficiency. In this study, high hydraulic conditions (HRT and inflow rate) are not likely to affect significantly the purification efficiency of nutrient. Therefore, the emphasis should be on the purification amounts per day with high hydraulicloadings (HRT and inflow rate) for the improvement of eutrophic reservoir withrelatively low nutrients concentration and large quantity to be treated.

본 연구는 농업용저수지의 수질개선을 위한 인공습지 시스템에서 수리학적 부하조건과 수질정화 특성간의 상관관계를 평가하고, 습지의 조성과 관리에 관한 기본적이며 주요 인자들을 규명하고자하였다. 인공습지시스템은 저수지 중층수를 유입시키기 위한 양수장과 미나리, 창포, 줄, 부들, 갈대등의 정수식물을 식재한 6개의 개별습지로 구성되어 있다. 시스템은 자유수면흐름방식으로 유입처리유량 $0.012-0.122\;m^3/s$,수리학적 체류시간 0.5-2.0 hr의 수리학적 고부하조건으로 운영하였으며, 수심은 0.1-0.2m, 유입수질은 저수지를 대상으로 하여 비교적 낮은 영양염류 농도(TN 2.224-2.462 mg/L, TP 0.145-0.164 mg/L)를 가지고 있다. 본 연구기간 중 각 개별습지의 평균 수질정화효율은 TN 12.1-14.3%로 갈대조에서 높게 나타났으며, TP는 6.3-9.5%로 식물 종에 따른 른 차이가없었다. SS는 17.4-38.5%, Cht-a는 12.6-20.2%로 미나리조에서 높게 나타났는데, 이는 유입수 농도가 다소 높은 때문으로 판단된다. 시간당 정화량은 TN $1.299-2.343\;g{\cdot}m^{-2}{\cdot}d^{-1}$ TP $0.85-1821\;g{\cdot}m^{-2}{\cdot}d^{-1}$, SS는 $17.9-111.6\;g{\cdot}m^{-2}{\cdot}d^{-1}$. Chl-3는 $0.011-0.094\;g{\cdot}m^{-2}{\cdot}d^{-1}$로 정화효율에서와 달리 TN은 줄에서 가장 높았고, TP는 창포에서 높았다. 침강성 물질인 SS와 Chl-a는 미나리에서 높게 나타났으며, 미나리는 BOD, COD, TN, TP등 다른 수질항목에서도 높은 값을 보여주고 있어 정화효율에서와 같이 유입수농도가 습지내 물질제거에 영향이 있음을 보여준다. 정화효율 및 시간당 정화량과 수리학적 조건간의 상관관계는 수심, 체류시간, 일유입량, 수리학적 부하량, 유입수 농도, 온도 등 다양한 변수에 의한 영향으로 비교적 낮게 나타났다. 정화효율과 수리학적조건간의 상관계수($R^2$)는 수리학적 체류시간과 0.016-0.731,일처리유량과는 0.015-0.868을 나타내었으며, 시간당 정화량과 수리학적 조건간의 상관계수($R^2$)는 수리학적 체류시간과는 0.173-0.763,일처리유량과는 0.209-0.770의 범위를 나타내었다. 정화효율과 수리학적 부하조건간의 상관계수($R^2$)Tt 0.5 이상을 나타내는 각 수생식물 습지별 수질항목은 체류시간과 일처리유량에 대해각각 20%,정화속도와 수리학적 조건간의 상관계수는 체류시간에 대해 53%, 일처리유량에 대해73%가 0.5이상을 보이고 있어 시간당 정화량과 수리학적 조건간의 상관관계가 정화효율과의 상관관계보다 좀더 유의성 있게 나타났다. 이것은 높은 수리학적 부하조건이 영양염류 등의 정화효율에는 크게 영향을 미치지 않음을 보여주고 있으며, 따라서 비교적 낮은 농도의 영양염류를 가지고 있고, 많은 처리수량을 요구하는 부영양화된 저수지의 수질개선을 위해서는 높은 수리학적 부하조건에서 시간당 정화량을 늘리는 관리방법이 경제적이며, 이에 초점을 맞추어 나가야 할 것으로 사료된다.

Keywords

References

  1. Advice Center for Rural Environmental Support.1995. The technique of water quality improvementapplied to a farming region.
  2. Aizaki, M. and H. Nakazato. 1997. Developement ofConstructed Wetland Using Hydroponic BiofilterMethod for Purification of Hyper-Eutrophic LakeWater, Jour. of water environmental Association.20: 622-628.
  3. APHA. 1995. Standard Methods for the Examinationof water and Wastewater. 19th edition.
  4. Bowner, K.H. 1987. Nutrient removal from effluentsby an artificial wetland: Influents of rhizosphereaeration and preferential flow studied using bromideand dye tracers. Wat. Res. 21: 591-599.
  5. Breen, P.F. 1990. A mass balance method for assessingthe potential of artificial wetlands for wastewatertreatment. Wat. Res. 24: 689-697.
  6. Burgoon, P.S., K.R. Reddy, T.A. BeBusk and B.Koopman. 1991. Vegetated submerged beds withartificial substrates. II: N and P Removal. J. ofEnviron. Eng. 117: 408-424.
  7. Chan, E., T.A. Bursztynsky, N. Hantzsche and Y.J.Litwin. 1982. The use of wetlands for water pollutioncontrol. Municipal Environmental ResearchLaboratory. U.S. EPA. 600: 282-286.
  8. Corbitt, R.A. and T.B. Paul. 1994. constructed wetlandsfor wastewater treatment. Applied wetlandsscience and technology. Lewis Publishers. Ch.10.221-247.
  9. Eriksson, P.G. 1997. Nitrogen removal in a wastewaterreservoir : The importance of denitrificationby epiphytic biofilms on submersed vegetation. J.Environ. Qual. 26: 905-910.
  10. Ham, J.H. and C.J. Yoon. 2000. Feasibility study ofconstructed wetland system for sewage treatmentin rural area. Kor. J. of Environ. Agri. 19: 426-432.
  11. Hiroyuki Nakazato. 1998. Purification by Bio-Parkthrough the production of crops. Jour. of Journalof water and waste 40: 867-873.
  12. Hosomi, M. 1994. The mechanism and constructiveutilization of purification of inland wetland. Jour.of water environmental Association. 17: 149-153.
  13. Jenssen, P.D., T. Mahlum and T. Krogstad. 1993.Potential use of constructed wetlands for watertreatment in Northern Environment. Wat. Sci.Tech. 28: 149-157.
  14. Kengi Hata, Masaya Ishikawa and Mitsukata Suzaki. 1996. Function of Nitrogen Removal in Wetland. Jour. JSIDRE. 64: 339-344.
  15. Nichols, S. 1983. Capacity of natural wetlands to removenutrients from wastewater. J. Wat. Pollut.Control Fed. 55: 495-505.
  16. Public Works Research Institute. 1998. Publication ofcomprehensive Countermeasure in River andThen River Basin. Technical Note of Public WorksResearch Institute. p. 89-94.
  17. Stephenson, M., G. Turner, Pope., J. Colt, A. Knightand G. Tchobanoglous. 1980. The environmentalrequirements of aquatic plants. Publication No.65: 655.
  18. Tokio Okino, 1997. The experiment of water qualitypurification by vegetation in Lake Suwa. Hetero.68: 42-50.
  19. Wathugala, A.G., T. Suzuki and Y. Kurihara. 1987.Removal of nitrogen, phosphorus and COD fromwastewater using sand filteration system withPhragmites australis. Wat. Res. 21: 1217-1224.
  20. Yang, H.M. 2000. Aquaculture recycling effluentfrom a pond system treating animal excreta ecologically.Kor. J. of Environ. Agri. 19: 339-344
  21. Yang, J.S. and J.Y. Jueng. 2002. Constructed Wetland.Sowha. p.72-126.
  22. Yoon, C.G., S.K. Kwun, J.H. Ham and J.K. Noh. 2000. Study on the performance of constructed wetland system for sewage treatment. J. of the Kor. Soci. of Agri. Eng. 42: 96-105.