• Title/Summary/Keyword: Influence of anions

Search Result 52, Processing Time 0.027 seconds

Leaching of lonic Components from the Soil Applied with Swine Slurry (돈분뇨의 토양처리시 이온 성분의 용탈 특성)

  • 김태헌;류성필;김성수;오윤근;허철구
    • Journal of Environmental Science International
    • /
    • v.12 no.3
    • /
    • pp.325-335
    • /
    • 2003
  • An agricultural land application of swine slurry is one of the best management practices in Jeju island whose ground water must be protected. So as to study the effect of appling swine slurry on ground water or aquifer, incubation-leaching technique was used by assuming the incubating period of 1, 2, 4, 8, 16, or 32 days, and application rate of 3200.0 mgT-N/$\ell$ , 820.0 mgT-P/$\ell$, and 1887.0 mgK$\^$+/$\ell$ in swine slurry. The leachates were collected from the soil columns(PVC 30 cm L${\times}$5.5 cm D) packed 15cm in depth with Gangjeong soil series by washing with 100 mL distilled water. The leached components were measured by using ion chromatography far Cl$\^$-/, NO$_3$-N, F$\^$-/, Br$\^$-/, Na$\^$+/, K$\^$+/, Ca$^2$$\^$+/, and Mg$^2$$\^$+/ , atomic absorption spectrophotometry for Fe and Mn, and UV-Vis spectrophotometry for T-N and T-p. Application of swine slurry in naked soil could influence on the ground water or aquifer by increasing nitrate-nitrogen in leachate with time, or leaching the cations present in soils in accompany with anions because of H$\^$+/produced in nitrification. Therefore, careful consideration should be taken about what amount, when, where, and how fur protecting ground water system.

Influence of Inorganic Salts on Aqueous Solubilities of Polycyclic Aromatic Hydrocarbons

  • Yim, Soobin
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.23-29
    • /
    • 2003
  • Setschenow constants of six alkali and alkaline earth metal-based electrolytes (i.e., NaCl, KCl, CaCl$_2$, K$_2$SO$_4$, Na$_2$SO$_4$, NaClO$_4$) for three polycyclic aromatic hydrocarbons (PAHs) (i.e., naphthalene, pyrene, and perylene) were investigated to evaluate the influence of a variety of inorganic salts on the aqueous solubility of PAHs. Inorganic salts showed a wide range of K$\_$s/ values (L/mol), ranging from 0.1108 (NaClO$_4$) to 0.6680 (Na$_2$SO$_4$) for naphthalene, 0.1071 (NaClO$_4$) to 0.7355 (Na$_2$SO$_4$) for pyrene, and 0.1526 (NaClO$_4$) to 0.8136 (Na$_2$SO$_4$) for perylene. In general, the salting out effect of metal cations decreased in the order of Ca$\^$2+/>Na$\^$+/>K$\^$+/. The effect of SO$_4$$\^$2-/>Cl$\^$-/>ClO4$\^$-/ was observed for anions of inorganic salts. The K$\_$s/ values decreased in the order of perylene>pyrene>naphthalene for K$_2$SO$_4$. However, the order of decreasing salting out effect for NaCl, KCl, CaCl$_2$, and NaClO$_4$ was perylene>naphthalene>pyrene. Hydration free energy of the 1:1 and 2:1 alkali and alkaline earth metal-based inorganic salts solution was observed to have a meaningful correlation with Setschenow constants. Thermodynamic interactions between PAH molecules and salt solution can be of importance in determining the magnitude of salting out effect for PAHs at a given salt solution.

Influence of Ionic Strength, pH, and Complex-forming Anions on the Adsorption of Cesium-137 and Strontium-90 by Kaolinite (카올리나이트에 의한 세슘-137 및 스트론튬-90 흡착에 대한 이온강도, pH, 복합체-형성 음이온의 영향)

  • Jeong, Chan Ho;Cho, Young Hwan;Hahn, Pil Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.1
    • /
    • pp.11-20
    • /
    • 1998
  • The effects of the major cations ($Ca^{2+}$, $Mg^{2+}$, $K^+$, $Na^+$), complex-forming anions ($SO_4{^{2-}}$, $HCO_3{^-}$), and solution pH on the adsorption of $^{137}Cs$ and $^{90}Sr$ by kaolinite in groundwater chemistry were investigated. Three-dimensional Kd modelling designed by a statistical method was attempted to compare the relative effect among hydrated radii, charge and concentration of competing cations on the adsorption of Cs and Sr. The modelling results indicate that the hydrated radii of competing cations is the most important factor, and then their charges and concentrations are also important factors in order. The property of zeta potential of kaolinite particles was discussed in terms of the amphoteric reactions of a kaolinite surface affecting the adsorption of Cs and Sr. The ionic strength of competing cations on the adsorption of Cs and Sr exerts a greater effect than the solution pH. The sorption behaviour of Sr on kaolinite is also highly dependent on the concentration of bicarbonate. The speciation of Sr and the saturation state of a secondary phase were thermodynamically calculated by a computer program, WATEQ4F. This indicates that the change in solution pH with the concentration of bicarbonate and the precipitation of a strontianite ($SrCO_3$) are major factors controlling Sr adsorption behaviour in the presence of bicarbonate ion.

  • PDF

Influence of Competing Ions and Metabolic Inhibitors on Heavy Metal Accumulation in the Cell of Heavy Metal-Tolerant Microorganisms (중금속내성균의 중금속 축적에 미치는 경쟁이온 및 대사저해제의 영향)

  • Cho, Ju-Sik;Lee, Hong-Jae;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.142-148
    • /
    • 1997
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Heavy metal-tolerant microorganisms, such as Pseudomonas putida, P. aeruginosa, P. chlororaphis and P. stutzeri possessing the ability to accumulate cadmium, lead, zinc and copper, respectively, were isolated from industrial wastewaters and mine wastewaters polluted with various heavy metals. The effect of competing ions and metabolic inhibitors on heavy metal accumulation in the cells was investigated. Heavy metal accumulation into cells was drastically decreased in the presence of competing cation, $Al^{3+}$, and also decreased, at a lesser extent, in the presence of competing anions, $CO_3\;^{2-}$ and $PO_4\;^{2-}$. But heavy metal accumulation was not influenced generally in the presence of the other rations and anions. The accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was remarkably decreased in the presence of metabolic inhibitors, but the accumulation of Pb by Pb-tolerant microorganism was little affected in the presence of metabolic inhibitors. These results suggested that the accumulation of Cd, Zn or Cu by Cd-, Zn- or Cu-tolerant microorganism was concerned with the biological activity depending on energy, and the accumulation of Pb by Pb-tolerant microorganism depended on not the biological activity but the physical adsorption on the cell surface. Each heavy metal-tolerant microorganism also exhibited some ability to accumulate the other heavy metals in solution containing equal concentrations of cadmium, lead, zinc and copper, when measured at 48 hours after inoculation of the microorganisms, but the accumulation rates were somewhat low as compared to the accumulation rates of heavy metal fitting to each tolerance. These results suggested that the accumulation of each heavy metal by each heavy metal-tolerant microorganism was a selective accumulation process.

  • PDF

The Impact of Negative Ions and Plant Volume Changes in Space on Fine Dust Purification in the Atmosphere (공기 중 음이온과 공간 내 식물용적 변화가 미세먼지 정화에 미치는 영향)

  • Deuk-Kyun Oh;Jeong-Ho Kim
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.217-226
    • /
    • 2024
  • This study aimed to investigate the influence of anions in the air on the purification of fine dust (PM10 and PM2.5) and to evaluate the effects of plants on the generation of anions in the air and the purification of fine dust. Subsequently, the fine dust reduction models were compared according to each factor and plant volume. The characteristics of anion generation by each factor were observed to be in the order of Type N.I (negative ion generator; 204,133.33 ea/cm3) > Type P30 (plant vol. 30%; 362.55 ea/cm3) > Type C (control; 46.22 ea/cm3), indicating that the amount of anion generation in the anion generator treatment group and the plant arrangement group were approximately 4,417 times and 7 times higher, respectively, than that in the untreated group. Consequently, the fine dust reduction characteristics by anion generation source showed that for PM10, Type NI had a purification efficiency 2.52 times higher than Type C, and Type P30 was 1.46 times higher, while for PM2.5, Type NI had a purification efficiency 2.26 times higher than Type C, and Type P30 was 1.31 times higher. The efficiency of fine dust purification by plant volume was in the order of Type P20 (84.60 minutes) > Type P30 (106.50 minutes) = Type P25 (115.50 minutes) = Type P15 (117.60 minutes) > Type P5 (125.25 minutes) = Type P10 (129.75 minutes), and for ultrafine dust, Type P20 (104.00 minutes) > Type P30 (133.20 minutes) = Type P25 (144.00 minutes) = Type P15 (147.60 minutes) > Type P5 (161.25 minutes) = Type P10 (168.00 minutes). Thus, a quantitative analysis of the anions and plants for purifying fine dust and suggested matters to be considered for future green space planning and plant planting considering fine dust purification.

Characterization of Coagulation on Synthetic Polymerization Al(III) Inorganic Coagulants for Water Treatment (상수처리용 합성 무기고분자 Al(III)계 응집제의 응집특성)

  • Han Seung-Woo;Jung Chul-Woo;Kang Lim-Seok
    • Journal of Environmental Science International
    • /
    • v.8 no.6
    • /
    • pp.717-724
    • /
    • 1999
  • This experiment was performed on three parts with prepared coagulants. (1) The characterization of coagulation for PACI coagulants. (2) Comparison of the characterization of coagulation with PAS and PACI coagulants. And (3) Comparison of the characterization of coagulation for the addition of calcium with PACI. Coagulation experiments were conducted with several dosages and pH for each coagulants. For the characterization of coagulation with PACI coagulants, coagulation of Nakdong river waters with three PACls (r=2.0, 2.2, 2.35) showed that the effectiveness of the three coagulants can be considered as r=2.2 > 2.0 > 2.35 which are also the order of higher polymeric aluminum contents. For the comparison of the characterization of coagulation for PAS and PACI coagulants, PAS (r=0.75) coagulants was more effective than other coagulant for the removal of organic matters by sweep floc mechanism with $A;(OH)_{3(S)}$. For comparison of the characterization of coagulation for the addition of calcium with PACI, the presence of divalent cation like $Ca^{2+}$ was supposed to influence the complex formation of organic anions. From the result of test on coagulation at various pH ranges, the PACI was least affected by the coagulation pH, and the addition of calcium to PACI was very effective for the removal of turbidity and organic materials over broader pH range (pH 4-9).

  • PDF

Assessing the anion type effect on the hydro-mechanical properties of smectite from macro and micro-structure aspects

  • Goodarzi, Amir R.;Akbari, Hamid R.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.183-200
    • /
    • 2014
  • The expansivity of clayey soils is a complicated phenomenon which may affect the stability of geotechnical structures and geo-environmental projects. In all common factors for the monitoring of soil expansion, less attention is given to anion type of pore space solutions. Therefore, this paper is concerned with the impact of various concentrations of different inorganic salts including NaCl, $Na_2SO_4$, and $Na_2CO_3$ on the macro and microstructure behavior of the expandable smectite clay. Comparison of the responses of the smectite/NaCl and smectite/$Na_2SO_4$ mixtures indicates that the effect of anion valance on the soil engineering properties is not very pronounced, regardless of the electrolyte concentration. However, at presence of carbonate as potential determining ions (PDIs) the swelling power increases up to 1.5 times compared to sulfate or chloride ions. The samples with $Na_2CO_3$ are also more deformable and show lower osmotic compressibility than the other mixtures. This demonstrates that the barrier performance of smectite greatly decreases in case of anions with the non-specific adsorption (e.g., $Cl^-$ and $SO{_4}^{2-}$) as the salinity of solution increases. Based on the results of the X-ray diffraction and sedimentation tests, the high soil volumetric changes upon exposure to carbonate is attributed to an increase in the repulsive forces between smectite basic unit layers due to the PDI effect of $CO{_3}^{2-}$ and increasing the pH level which enhance the buffering capacity of smectite. The study concluded that the nature of anion through its influence on the re-arrangement of soil microstructure and osmotic phenomena governs the hydro-mechanical parameters of expansive clays. It seems not coinciding with the double layer theory of the Gouy-Chapman double layer model.

Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study

  • Tiwari, Diwakar;Jamsheera, A.;Zirlianngura, Zirlianngura;Lee, Seung Mok
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.186-192
    • /
    • 2017
  • The carbon paste electrode (CPE) was modified with the pristine bentonite and hybrid material (HDTMA-modified bentonite). The modified-CPEs are then employed as working electrode in an electrochemical detection of As(V) from aqueous solutions using the cyclic voltammetric measurements. Cyclic voltammograms revealed that As(V) showed reversible behavior onto the working electrode. The hybrid material-modified carbon paste electrode showed significantly enhanced electrochemical signal which was then utilized in the low level detection of As(V). Moreover, the studies were conducted at neutral pH conditions. The electrochemical studies were conducted with scan rates (20 to 200 mV/s) to deduce the mechanism of redox processes involved at the electrode surface. The anodic current was linearly increased, increasing the concentration of As(V) from 5.0 to $35.0{\mu}g/g$ using the hybrid material-modified electrode. This provided fairly a good calibration line for As(V) detection. The presence of varied concentrations of As(III) in the determination of total arsenic was studied. The influence of several cations and anions viz., Cu(II), Mn(II), Zn(II), Pb(II), Cd(II), Fe(III), $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$, EDTA and glycine in the detection of As(V) from aqueous solution was also studied. Further, in an attempt to simulate the real matrix analysis, the tap water sample was spiked with As(V) and subjected for As(V) detection using the modified-CPE.

Effect of Acid Rain on Marble Cultural Properties (대리석 문화재에 대한 산성비의 영향)

  • Kim, Sa Dug;Hwang, Jin Ju;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 1998
  • The influence of acid rain on the marble cultural properties investigated in two ways : 1) marble samples similar to that of Wongak-sa 10-story pagoda were directly exposed to rain in air at Chongro and Kwanghwamun sites; 2) marble samples under a protective facility were indirectly exposed to rain. The quantity of corrosion products and variations of calcium ion to rain were analyzed. The result shows that the corrosion qantity of the marble samples exposed directly under 1~8 mm rainfall in the Chongno and Kwanghwamun sites were similar, but those were 7.7 times higher than those indoor. Concentration of anions were higher than that of cations among the ion concentration over 40% in the early 1 mm rainfall. Calcium ion was produced over 30%. Because the monuments of marble, limestone and sandstone were affected by acid rain, it may be necessary to establish policies for the conservation on the National Treasures made of these materials.

  • PDF

Equimolar Carbon Dioxide Absorption by Ether Functionalized Imidazolium Ionic Liquids

  • Sharma, Pankaj;Park, Sang-Do;Park, Ki-Tae;Jeong, Soon-Kwan;Nam, Sung-Chan;Baek, Il-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2325-2332
    • /
    • 2012
  • A series $[C_3Omim]$[X] of imidazolium cation-based ILs, with ether functional group on the alkyl side-chain have been synthesized and structure of the materials were confirmed by various techniques like $^1H$, $^{13}C$ NMR spectroscopy, MS-ESI, FTIR spectroscopy and EA. More specifically, the influence of changing the anion with same cation is carried out. The absorption capacity of $CO_2$ for ILs were evaluated at 30 and $50^{\circ}C$ at ambient pressure (0-1.6 bar). Ether functionalized ILs shows significantly high absorption capacity for $CO_2$. In general, the $CO_2$ absorption capacity of ILs increased with a rise in pressure and decreased when temperature was raised. The obtained results showed that absorption capacity reached about 0.9 mol $CO_2$ per mol of IL at $30^{\circ}C$. The most probable mechanism of interaction of $CO_2$ with ILs were investigated using FTIR spectroscopy, $^{13}C$ NMR spectroscopy and result shows that the absorption of $CO_2$ in ether functionalized ILs is a chemical process. The $CO_2$ absorption results and detailed study indicates the predominance of 1:1 mechanism, where the $CO_2$ reacts with one IL to form a carbamic acid. The $CO_2$ absorption capacity of ILs for different anions follows the trend: $BF_4$ < DCA < $PF_6$ < TfO < $Tf_2N$. Moreover, the as-synthesized ILs is selective, thermally stable, long life operational and can be recycled at a temperature of $70^{\circ}C$ or under vacuum and can be used repeatedly.