Browse > Article
http://dx.doi.org/10.4491/eer.2016.045

Use of hybrid materials in the trace determination of As(V) from aqueous solutions: An electrochemical study  

Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences Mizoram University)
Jamsheera, A. (Department of Chemistry, School of Physical Sciences Mizoram University)
Zirlianngura, Zirlianngura (Department of Chemistry, School of Physical Sciences Mizoram University)
Lee, Seung Mok (Department of Environmental Engineering, Catholic Kwandong University)
Publication Information
Environmental Engineering Research / v.22, no.2, 2017 , pp. 186-192 More about this Journal
Abstract
The carbon paste electrode (CPE) was modified with the pristine bentonite and hybrid material (HDTMA-modified bentonite). The modified-CPEs are then employed as working electrode in an electrochemical detection of As(V) from aqueous solutions using the cyclic voltammetric measurements. Cyclic voltammograms revealed that As(V) showed reversible behavior onto the working electrode. The hybrid material-modified carbon paste electrode showed significantly enhanced electrochemical signal which was then utilized in the low level detection of As(V). Moreover, the studies were conducted at neutral pH conditions. The electrochemical studies were conducted with scan rates (20 to 200 mV/s) to deduce the mechanism of redox processes involved at the electrode surface. The anodic current was linearly increased, increasing the concentration of As(V) from 5.0 to $35.0{\mu}g/g$ using the hybrid material-modified electrode. This provided fairly a good calibration line for As(V) detection. The presence of varied concentrations of As(III) in the determination of total arsenic was studied. The influence of several cations and anions viz., Cu(II), Mn(II), Zn(II), Pb(II), Cd(II), Fe(III), $Cl^-$, $NO_3{^-}$, $PO_4{^{3-}}$, EDTA and glycine in the detection of As(V) from aqueous solution was also studied. Further, in an attempt to simulate the real matrix analysis, the tap water sample was spiked with As(V) and subjected for As(V) detection using the modified-CPE.
Keywords
Electrochemical sensor; Hybrid material; LOD; Trace As(V) detection;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK. Iron(III) modification of bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ. Sci. Technol. 2012;46:2251-2256.   DOI
2 Chen M, Lin Y, Gu C, Wang J. Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry. Talanta 2003;104:53-57.
3 Su CM, Androbert M. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 2001;35:1487-1493.   DOI
4 Guo L, Zhang Q, Huang Y, Han Q, Wang Y, Fu Y. The application of thionine-graphene nanocomposite in chiral sensing for Tryptophan enantiomers. Bioelectrochemistry 2013;94:87-93.   DOI
5 Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis 2012;24:798-806.   DOI
6 Simm AO, Ordeig O, del Campo J, Munoz FX. Compton RG. Diffusional protection of electrode surfaces using regular arrays of immobilised droplets: Overcoming interferences in electroanalysis. Analyst 2006;131:987-989.   DOI
7 Dai X, Compton RG. Direct electrodeposition of gold nanoparticles onto indium tin oxide film coated glass: Application to the detection of arsenic(III). Anal. Sci. 2006;22:567-570.   DOI
8 Profumo A, Merli D, Pesavento M. Voltammetric determination of inorganic As(III) and total inorganic As in natural waters. Anal. Chim. Acta 2005;539:245-250.   DOI
9 Feeney R, Kounaves SP. On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal. Chem. 2000;72:2222-2228.   DOI
10 Forsberg G, O'Laughlin JW, Megargle RG. Determination of arsenic by anodic stripping voltammetry and differential pulse anodic stripping voltammetry. Anal. Chem. 1975;47:1586-1592.   DOI
11 Dominguez-Gonzalez R, GonzalezVarela L, Bermejo-Barrera P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta 2014;118:262-269.   DOI
12 Teixeira MC, Tavares E de FL, Saczk AA, et al. Cathodic stripping voltammetric determination of arsenic in sugarcane brandy at a modified carbon nanotube paste electrode. Food Chem. 2014;154:38-43.   DOI
13 Greulach U, Henze G. Analysis of arsenic(V) by cathodic stripping voltammetry. Anal. Chim. Acta 1995;306:217-223.   DOI
14 Xiao L, Wildgoose GG, Compton RG. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 2008;620:44-49.   DOI
15 Mandal BK, Suzuki KT. Arsenic round the world: A review. Talanta 2002;58:201-235.   DOI
16 IARC. International Agency for Research on Cancer (IARC) monographs on the evaluation of carcinogenic risks to humans. Supplement 7; 1987.
17 Tiwari D, Lee SM. Novel hybrid materials in the remediation of ground waters contaminated with As(III) and As(V). Chem. Eng. J. 2012;204-206:23-31.   DOI
18 Lin MC, Liao CM. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan. Food Chem. Toxicol. 2008;46:701-709.   DOI
19 Lalhmunsiama, Tiwari D, Lee SM. Activated carbon and manganese coated activated carbon precursor to dead biomass in the remediation of arsenic contaminated water. Environ. Eng. Res. 2012;17(S1):S41-S48.   DOI
20 WHO. World Health Organization [Internet]. Available from: www.who.int/mediacentre/factsheets/fs210/en/.
21 Gupta P, Goyal RN. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta 2014;120:17-22.   DOI
22 Tonle IK, Ngameni E, Tcheumi HL, Tchieda VH, Carteret C, Walcarius A. Sorption of methylene blue on an organoclay bearing thiol groups and application to electrochemical sensing of the dye. Talanta 2008;74:489-497.   DOI
23 Manisankar P, Selvanathan TG, Vedhi C. Utilization of sodium montmorillonite clay-modified electrode for the determination of isoproturon and carbendazim in soil and water samples. Appl. Clay Sci. 2005;29:249-257.   DOI
24 Svancara I, Yytras K, Bobrowski A, Kalcher K. Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 2002;58:45-55.   DOI
25 Dai X, Compton RG. Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper. Analyst 2006;131:516-521.   DOI
26 Lee SM, Zirlianngura, Anjudikkal J, Tiwari D. Electrochemical sensor for trace determination of cadmium(II) from aqueous solutions: Use of hybrid materials precursors to natural clays. Int. J. Environ. Anal. Chem. 2016;96:490-504.   DOI
27 Mohan D, Jr. Pittman CU. Arsenic removal from water/wastewater using adsorbents-A critical review. J. Hazard. Mater. 2007;142:1-53.   DOI
28 Hua C, Jagner D, Renman L. Automated determination of total arsenic in sea water by flow constant-current stripping analysis with gold fibre electrodes. Anal. Chim. Acta 1987;201:263-268.   DOI
29 Hamilton TW, Ellis J. Determination of arsenic and antimony in electrolytic copper by anodic stripping voltammetry at a gold film electrode. Anal. Chim. Acta 1980;119:225-233.   DOI
30 Simm AO, Banks CE, Compton RG. Sonically assisted electroanalytical detection of ultratrace arsenic. Anal. Chem. 2004;76:5051-5055.   DOI
31 Tiwari D, Laldawngliana C, Lee SM. Immobilized small sized manganese dioxide sand in the remediation of arsenic contaminated water. Environ. Eng. Res. 2014;19:107-113   DOI
32 Cacho F, Lauko L, Manova A, Beinrohr E. On-line electrochemical pre-concentration of arsenic on a gold coated porous carbon electrode for graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2012;27:695-699.   DOI
33 Cornejo L, Lienqueo H, Arenas M, et al. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation. Environ. Pollut. 2008;156:827-831.   DOI
34 Greulach U, Henze G. Analysis of arsenic(V) by cathodic stripping voltammetry. Anal. Chim. Acta 1995;306:217-223.   DOI
35 Simm AO, Banks CE, Compton RG. The electrochemical detection of arsenic(III) at a silver electrode. Electroanalysis 2005;17:1727-1733.   DOI
36 Dai X, Nekrassova O, Hyde ME, Compton RG. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes. Anal. Chem. 2004;76:5924-5929.   DOI
37 Simm AO, Banks CE, Wilkins SJ, Karousos NG, Davis J, Compton RG. A comparison of different types of gold-carbon composite electrode for detection of arsenic(III). Anal. Bioanal. Chem. 2005;381:979-985.   DOI
38 Hcnze G, Neeb R. Elektrochemische Analytik. Springer-Vcrlag: Berlin; 1986. p. 185.
39 Mardegan A, Scopece P, Lamberti F, Meneghetti M, Moretto LM, Ugo P. Electroanalysis of trace inorganic arsenic with gold nanoelectrode ensembles. Electroanalysis 2012;24:798-806.   DOI
40 Svancara I, Yytras K, Bobrowski A, Kalcher K. Determination of arsenic at a gold-plated carbon paste electrode using constant current stripping analysis. Talanta 2002;58:45-55.   DOI
41 Salinas-torres D, Huerta F, Montilla F, Morallon E. Study on electroactive and electrocatalytic surfaces of single walled carbon nanotube-modified electrodes. Electrochim. Acta 2011;56: 2464-2470.   DOI
42 Gibbon-Walsh K, Salaun P, van den Berg CMG. Determination of arsenate in natural pH seawater using a manganese-coated gold microwire electrode. Anal. Chim. Acta 2012;710:50-57.   DOI
43 Bodewig FG, Valenta P, Nurnberg HW. Trace determination of As(III) and As(V) in natural waters by differential pulse anodic stripping voltammetry. Z. Anal. Chem. 1982;311:187-191.   DOI
44 Lee SM, Lalhmunsiama, Thanhmingliana, Tiwari D. Porous hybrid materials in the remediation of water contaminated with As(III) and As(V). Chem. Eng. J. 2015;270:496-507.   DOI
45 Zirlianngura, Jamsheera A, Tiwari D, Lee SM. Efficient use of novel hybrid materials in the ultra-trace determination of arsenic from aqueous solutions: An electrochemical study. Desal. Wat. Treat. 2016;57:18730-18738.   DOI
46 Tanaka M, Takahashia Y, Yamaguchi N, Kim KW, Zheng G, Sakamitsu M. The difference of diffusion coefficients in water for arsenic compounds at various pH and its dominant factors implied by molecular simulations. Geochim. et Cosmochim. Acta 2013;105:360-371.   DOI
47 Afkhami A, Ghaedi H, Madrakian T, Nematollahi D, Mokhtari B. Electro-oxidation and voltammetric determination of oxymetholone in the presence of mestanolone using glassy carbon electrode modified with carbon nanotubes. Talanta 2014; 121:1-8.   DOI
48 Ndlovu T, Mamba BB, Sampath S, Krause RW, Arotiba OA. Voltammetric detection of arsenic on a bismuth modified exfoliated graphite electrode. Electrochim. Acta 2014;128:48-53.   DOI
49 Cabelka TD, Austin DS, Johnson DC. Electrocatalytic oxidation of As(III). Voltammetric studies at Pt electrodes. J. Electrochem. Soc. 10984;131:1595-1602.   DOI