DOI QR코드

DOI QR Code

The Impact of Negative Ions and Plant Volume Changes in Space on Fine Dust Purification in the Atmosphere

공기 중 음이온과 공간 내 식물용적 변화가 미세먼지 정화에 미치는 영향

  • Deuk-Kyun Oh (Dept. of Green Technology Convergence, Konkuk Univ.) ;
  • Jeong-Ho Kim (Dept. of Green Technology Convergence, Konkuk Univ.)
  • 오득균 (건국대학교 녹색기술융합학과) ;
  • 김정호 (건국대학교 녹색기술융합학과)
  • Received : 2024.02.23
  • Accepted : 2024.03.17
  • Published : 2024.04.30

Abstract

This study aimed to investigate the influence of anions in the air on the purification of fine dust (PM10 and PM2.5) and to evaluate the effects of plants on the generation of anions in the air and the purification of fine dust. Subsequently, the fine dust reduction models were compared according to each factor and plant volume. The characteristics of anion generation by each factor were observed to be in the order of Type N.I (negative ion generator; 204,133.33 ea/cm3) > Type P30 (plant vol. 30%; 362.55 ea/cm3) > Type C (control; 46.22 ea/cm3), indicating that the amount of anion generation in the anion generator treatment group and the plant arrangement group were approximately 4,417 times and 7 times higher, respectively, than that in the untreated group. Consequently, the fine dust reduction characteristics by anion generation source showed that for PM10, Type NI had a purification efficiency 2.52 times higher than Type C, and Type P30 was 1.46 times higher, while for PM2.5, Type NI had a purification efficiency 2.26 times higher than Type C, and Type P30 was 1.31 times higher. The efficiency of fine dust purification by plant volume was in the order of Type P20 (84.60 minutes) > Type P30 (106.50 minutes) = Type P25 (115.50 minutes) = Type P15 (117.60 minutes) > Type P5 (125.25 minutes) = Type P10 (129.75 minutes), and for ultrafine dust, Type P20 (104.00 minutes) > Type P30 (133.20 minutes) = Type P25 (144.00 minutes) = Type P15 (147.60 minutes) > Type P5 (161.25 minutes) = Type P10 (168.00 minutes). Thus, a quantitative analysis of the anions and plants for purifying fine dust and suggested matters to be considered for future green space planning and plant planting considering fine dust purification.

본 연구는 공기 중 음이온이 미세먼지(PM10, PM2.5) 정화에 미치는 영향을 파악하고, 식물이 공기 중 음이온 발생과 미세먼지 정화에 미치는 영향을 평가하기 위하여 음이온 발생요인별 음이온 발생량을 측정하고, 각 요인별, 식물 용적별 미세먼지 저감 모형을 구축하여 비교하였다. 음이온 발생요인별 특성은 Type N.I(Negative ion generator; 204,133.33ea/cm3) > Type P30(Plant Vol. 30%; 362.55ea/cm3) > Type C(Control; 46.22ea/cm3)의 순으로 음이온 발생량을 살펴보면 무처리구에 비하여 음이온 발생기 처리구에서 약 4,417배, 식물 배치구에서 약 8배 많았다. 이에 따른 음이온 발생원별 미세먼지 저감 특성은 PM10에서 Type NI가 Type C에 비하여 정화효율이 2.52배, Type P30이 1.46배 높았으며, PM2.5의 경우, Type NI가 Type C에 비하여 정화효율이 2.26배, Type P30이 1.31배 높은 것으로 분석되었다. 식물의 용적별 미세먼지 정화 효율은 Type P20(84.60분) > Type P30(106.50분) = Type P25(115.50분) = Type P15(117.60분) > Type P5(125.25분) = Type P10(129.75분)의 순이었으며, 초미세먼지의 경우 Type P20 (104.00분) > Type P30(133.20분) = Type P25(144.00분) = Type P15(147.60분) > Type P5(161.25분) = Type P10 (168.00분)의 순이었다. 이렇게 음이온의 미세먼지 정화 능력과 식물의 미세먼지 정화능력을 정량적으로 분석하였으며, 향후 미세먼지 정화를 고려한 녹지계획 및 식물식재에 고려해야할 사항을 제안하였다.

Keywords

Acknowledgement

이 논문은 2022년도 건국대학교 KU학술연구비 지원에 의한 결과임.

References

  1. Apte, J.S., J.D. Marshall, A.J. Cohen and M. Brauer(2015) Addressing global mortality from ambient PM2.5. Environmental Science & Technology 49(13): 8057-8066. (in English)
  2. Becket, K.P., P.H. Frer-Smith and G. Taylor(1998) Urban woodlands: Their role in reducing the effects of particulate pollution. Environmental Pollution 99: 347-360. (in English)
  3. Hong, S.H., R.Y. Kang, M.Y. An, J.S. Kim and E.S. Jung(2018) Study on the impact of roadside forests on particulate matter between road and public openspace in front of building site. Korean J. Environ. Ecol. 32(3): 323-331. (in Korean with English abstract)
  4. Hyundai Research Institute(2019) Public perception survey on fine dust. Weekly Economic Review 833: 9-10. (in Korean)
  5. Jin, S.U.(2005) Anion and Well-bing (1st ed.). Hanja Engineering Inc., Seoul, pp. 45-68. (in Korean)
  6. Kim T.H., J.M. Park and S.C. Kim(2018) The indoor air purification system using LED and fan for Epipremnum aureum. The Korea Institute of Convergence Signal Processing 19(4): 167-173. (in Korean with English abstract)
  7. Kim, J.H., D.K. Oh and Y.H. Yoon(2015) Comparative analysis of negative air ion generation according to vegetation type of green space in summer: Targeting to the Yangjae Citizen's Forest in Seochogu, Seoul. Urban Design 16(6): 1598-0650. (in Korean with English abstract)
  8. Kim, J.H., S.H. Lee and Y.H. Yoon(2019) Evaluation of air ion according to the type of ridge in urban park: Focused on Tangeumdae park in Chung. J. Eco. Env. 33(5): 587-595. (in Korean with English abstract)
  9. Kim, K.J., E.H. Yoo, H.W. Seo, S.Y. Ho, J.A. Lee and H.H. Jung(2012) Air anions emission in Cam and C3plants affected by light intensity. J. Korean Soc. People Plants Environ. 15(4): 281-285. (in Korean with English abstract)
  10. Kwon K.J. and B.J. Park(2018) Particulate matter removal of indoor plants, dieffenbachia amoena 'Marianne' and Spathipyllum spp. according to Light Intensity. Journal of the Korean Institute of Landscape Architecture 46(2): 62-68. (in Korean with English abstract)
  11. Lee, J.H. and P.S. Yoon(2003), A study on effciency and mechanism of removing indoor pollutants used anion generated by indoor plants. J. People Plants and Environment 6(4): 81-92. (in Korean with English abstract)
  12. Lee, J.H.(2003) The effect of improving indoor air quality used anion by in door plants. J. Kor. Inst. Interior Landscape Archi. 5(1): 89-98. (in Korean with English abstract)
  13. Lee, J.H.(2004), A study of gereration by indoor plants. J. Kor. Inst. Interior Landscape Archi. 6(2): 53-66. (in Korean with English abstract)
  14. Lim, S.S., T. Vos, A.D. Flaxman, G. Danaei, K. Shibuya, H. Adair-Rohani and P.M. Pelizzari(2012). A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380(9859): 2224-2260. (in English)
  15. Ministry of Environment(2018) Q&A of fine dust that people want to know, No. 93530, National Institute of Environmental Science, Incheon, Korea. (in Korean)
  16. National Assembly Budget Office(2019) Analysis of fine dust response project. Government report (31-9700487-001733-01). National Assembly Budget Office, Seoul, Korea. (in Korean)
  17. Park, S.H., Y.B. Lee, G.Y. Bea and M. Kondo(1998) Anion evolution in plants and its involved factors. Horti. Environ. Bio Tech. 39(1): 115-118. (in Korean with English abstract)
  18. R.D.A.(2008) Technology transfer workshop of air purification method using gardening plant 2008. Horticultural Research Institute, Suwon, 30 Sep. 2008. (in Korean)
  19. Weisel C.P., S. Alimokhtari and P.F. Sanders(2008) Indoor air VOC concentrations in suburban and rural New Jersey. Environ Sci Technol. 42(22): 8231-8238. (in English)
  20. Wu C.C., G.W.M. Lee, S. Yang, K.P. Yu and C.L. Lou(2006) Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci. Total Envirion. 370(1): 245-253. (in English)