• Title/Summary/Keyword: Influence Vector

Search Result 286, Processing Time 0.029 seconds

Optimum Field Balancing of Ratating Machinery Using Genetic Algorithm (유전 알고리즘을 이용한 회전기계의 최적 현장평형잡이)

  • Choi, Won-Ho;Yang, Bo-Suk;Joo, Ho-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1819-1826
    • /
    • 1996
  • This paper present the claculating method of optimum correction mass within permissible vibration linits for ratating machinery in two-plane field balancing. Basic technique of this method is based on influence coefficient method, and grphic vector composition that the resultant of two influence vectors obtained by trial mass have to be equilibrium with initial vibration vector in the each correction plane. Genetic algorithm which is a search algorithm based on the mechanism of natural selection and natural genetics is sued for vector composition, and SUMT method is used to objective function which seeks optimum correction mass for balancing a rotor.

Optimum Balancing of Rotating Machinery Using Genetic Algorithm (유전 알고리즘을 이용한 회전기계의 최적 평형잡이)

  • 주호진;최원호;양보석
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.195-202
    • /
    • 1995
  • This paper presents the calculating method of optimum correction mass within permissible vibration limits for rotating machinery in two-plane field balancing. Basic technique of this method based on influence coefficient method, is graphic vector composition that the resultant of two influence vectors obtained by trial mass have to be equilibrium with initial vibration vector in the each correction plane. Genetic algorithm which is a search algorithm based on the mechanics of natural selection and natural genetics is used for vector composition, and SUMT method is used to objective function which seeks optimum correction mass for balancing a rotor.

  • PDF

SCALED VISUAL CURVATURE AND VISUAL FRENET FRAME FOR SPACE CURVES

  • Jeon, Myungjin
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.37-53
    • /
    • 2021
  • In this paper we define scaled visual curvature and visual Frenet frame that can be visually accepted for discrete space curves. Scaled visual curvature is relatively simple compared to multi-scale visual curvature and easy to control the influence of noise. We adopt scaled minimizing directions of height functions on each neighborhood. Minimizing direction at a point of a curve is a direction that makes the point a local minimum. Minimizing direction can be given by a small noise around the point. To reduce this kind of influence of noise we exmine the direction whether it makes the point minimum in a neighborhood of some size. If this happens we call the direction scaled minimizing direction of C at p ∈ C in a neighborhood Br(p). Normal vector of a space curve is a second derivative of the curve but we characterize the normal vector of a curve by an integration of minimizing directions. Since integration is more robust to noise, we can find more robust definition of discrete normal vector, visual normal vector. On the other hand, the set of minimizing directions span the normal plane in the case of smooth curve. So we can find the tangent vector from minimizing directions. This lead to the definition of visual tangent vector which is orthogonal to the visual normal vector. By the cross product of visual tangent vector and visual normal vector, we can define visual binormal vector and form a Frenet frame. We examine these concepts to some discrete curve with noise and can see that the scaled visual curvature and visual Frenet frame approximate the original geometric invariants.

A New Direct Power Control Strategy for NPC Three-Level Voltage Source Rectifiers Using a Novel Vector Influence Table Method

  • Xia, Chang-Liang;Xu, Zhe;Zhao, Jia-Xin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.106-115
    • /
    • 2015
  • This paper proposes a novel direct power control (DPC) strategy for neutral-point-clamped (NPC) three-level rectifiers, to directly control the active power, the reactive power and the neutral point potential of the rectifiers by referring to three pre-calculated vector influence tables and minimizing an objective function. In the three vector influence tables, the influences of different voltage vectors on the active power, the reactive power and the neutral-point potential are shown explicitly. A conceptual description and control algorithm of the proposed controller are presented in this paper. Then, numerical simulations and experiments are carried out to validate the proposed method. Both the simulation and experimental results show that good performances during both the steady-state and transient operating conditions are achieved. As a result, the proposed strategy has been proven to be effective for NPC three-level rectifiers.

Local Influence Assessment of the Misclassification Probability in Multiple Discriminant Analysis

  • Jung, Kang-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.27 no.4
    • /
    • pp.471-483
    • /
    • 1998
  • The influence of observations on the misclassification probability in multiple discriminant analysis under the equal covariance assumption is investigated by the local influence method. Under an appropriate perturbation we can get information about influential observations and outliers by studying the curvatures and the associated direction vectors of the perturbation-formed surface of the misclassification probability. We show that the influence function method gives essentially the same information as the direction vector of the maximum slope. An illustrative example is given for the effectiveness of the local influence method.

  • PDF

Influence of Immunity Induced at Priming Step on Mucosal Immunization of Heterologous Prime-Boost Regimens

  • Eo, Seong-Kug
    • IMMUNE NETWORK
    • /
    • v.3 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Background: The usefulness of DNA vaccine at priming step of heterologous prime-boost vaccination led to DNA vaccine closer to practical reality. DNA vaccine priming followed by recombinant viral vector boosting via systemic route induces optimal systemic immunity but no mucosal immunity. Mucosal vaccination of the reversed protocol (recombinant viral vector priming-DNA vaccine boosting), however, can induce both maximal mucosal and systemic immunity. Here, we tried to address the reason why the mucosal protocol of prime-boost vaccination differs from that of systemic vaccination. Methods: To address the importance of primary immunity induced at priming step, mice were primed with different doses of DNA vaccine or coadministration of DNA vaccine plus mucosal adjuvant, and immunity including serum IgG and mucosal IgA was then determined following boosting with recombinant viral vector. Next, to assess influence of humoral pre-existing immunity on boosting $CD8^+$ T cell-mediated immunity, $CD8^+$ T cell-mediated immunity in B cell-deficient (${\mu}K/O$) mice immunized with prime-boost regimens was evaluated by CTL assay and $IFN-{\gamma}$-producing cells. Results: Immunity primed with recombinant viral vector was effectively boosted with DNA vaccine even 60 days later. In particular, animals primed by increasing doses of DNA vaccine or incorporating an adjuvant at priming step and boosted by recombinant viral vector elicited comparable responses to recombinant viral vector primed-DNA vaccine boosted group. Humoral pre-existing immunity was also unlikely to interfere the boosting effect of $CD8^+$ T cell-mediated immunity by recombinant viral vector. Conclusion: This report provides the important point that optimally primed responses should be considered in mucosal immunization of heterologous prime-boost regimens for inducing the effective boosting at both mucosal and systemic sites.

LOCAL INFLUENCE ON THE GOODNESS-OF-FIT TEST STATISTIC IN MAXIMUM LIKELIHOOD FACTOR ANALYSIS

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.489-498
    • /
    • 1998
  • The influence of observations the on the goodness-of-fit test in maximum likelihood factor analysis is investigated by using the local influence method. under an appropriate perturbation the test statistic forms a surface. One of main diagnostics is the maximum slope of the perturbed surface the other is the direction vector cor-responding to the curvature. These influence measures provide the information about jointly influence measures provide the information about jointly influential observations as well as individ-ually influential observations.

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

SUPPORT VECTOR MACHINE USING K-MEANS CLUSTERING

  • Lee, S.J.;Park, C.;Jhun, M.;Koo, J.Y.
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.175-182
    • /
    • 2007
  • The support vector machine has been successful in many applications because of its flexibility and high accuracy. However, when a training data set is large or imbalanced, the support vector machine may suffer from significant computational problem or loss of accuracy in predicting minority classes. We propose a modified version of the support vector machine using the K-means clustering that exploits the information in class labels during the clustering process. For large data sets, our method can save the computation time by reducing the number of data points without significant loss of accuracy. Moreover, our method can deal with imbalanced data sets effectively by alleviating the influence of dominant class.

Dead Time Compensation of Vector Controlled Inverter Using Space Vector Modulation Method (공간벡터 전류제어 기법을 이용한 벡터제어형 인버터의 dead time 보상)

  • Hong, Ki-Phil;Oh, Won-Seok;Kim, Young-Tae;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.265-269
    • /
    • 1994
  • The switching dead time avoiding a bridge leg short circuit in PWM voltage source inverter produces distortions of the controlling inverter output performance such as current waveform, voltage vector, and torque. In this paper, the influence of dead time is investigated. The on-line space voltage vector modulation method is used for current controller. It is possible to compensate dead time by space voltage vector modulation which generates additional pulse compensating voltage distortion caused by dead time. In addition, narrow pulse which is generally neglected can be compensated. All the algorithms, including field-oriented control are performed by one chip microprocessor 80C196MC and DSP TMS320C31. Experimental results probe that the proposed scheme provides a good inverter output performance.

  • PDF