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Local Influence Assessment of the Misclassification
Probability in Multiple Discriminant Analysis

Kang-Mo Jung !

ABSTRACT

The influence of observations on the misclassification probability in mul-
tiple discriminant analysis under the equal covariance assumption is inves-
tigated by the local influence method. Under an appropriate perturbation
we can get information about influential observations and outliers by study-
ing the curvatures and the associated direction vectors of the perturbation-
formed surface of the misclassification probability. We show that the influ-
ence function method gives essentially the same information as the direction
vector of the maximum slope. An illustrative example is given for the effec-
tiveness of the local influence method.

Keywords: Influence function; Influential observations; Local influence; Multiple
discriminant analysis; Perturbation

1. INTRODUCTION

In linear discriminant analysis, diagnostic methods based on the influence
functions and omission approaches have been suggested for detecting influential
observations and outliers. Campbell (1978) used the influence function method.
Critchley and Vitiello (1991), and Fung (1992) independently proposed two fun-
damental statistics, on which many influence measures in two-group discriminant
analysis depend. Recently, Fung (1996) considered the influence function method
on the misclassification probability in multiple discriminant analysis.

The local influence method was introduced by Cook (1986) as a general
method of assessing the influence of minor perturbations of the model and was
adapted to two-group discriminant analysis by Kim (1996). Kim (1996) consid-
ered the local influence method based on the direction vector of the maximum
slope of a path on the surface formed by the perturbed maximum likelihood es-
timator of the misclassification probability. Wu and Luo (1993) called Cook’s
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likelihood displacement approach the first order local influence method and they
extended that to the case of a variable, for example the maximum likelihood es-
timator of a parameter. It is so-called the second order local influence method
based on the direction vectors corresponding to relatively large local maximum
curvatures. Jung et al. (1997) studied the second order local influence method in
two-group discriminant analysis, and also showed that the local influence mea-
sures include the two statistics proposed by Fung (1992).

In this work the second order local influence method is adapted to multiple
discriminant analysis for the purpose of investigating the influence of observations
on the misclassification probability in multiple discriminant analysis. The mis-
classification probability in multiple discriminant analysis is not easily obtained,
and so the local influence method in two-group discriminant analysis can not
be directly extended to multiple discriminant analysis. In Section 2 we describe
the local influence procedure in multiple discriminant analysis. More detailed
computations for the local influence method are included in Section 3. It will
be shown that the first order local influence measure gives the same influence
information as the empirical influence function. Also, we can see that the results
of this paper include those of Jung et al. (1997) when the number of populations
is two. In Section 4 a numerical example is given to show the effectiveness of the
local influence method. This example shows that the local influence method gives
useful information about influential observations and outliers, even when the in-
fluence function method does not detect significantly influential observations and
outliers.

2. LOCAL INFLUENCE PROCEDURE

Suppose that there are m populations (71, ... , 7y ) with multinormal proba-
bility distribution Np(p;, X) (i = 1,... ,m) having common nonsingular covari-
ance matrix X. Assume that the prior probabilities for each population w; are
equal and the cost function is constant. Then the minimum expected cost of
misclassification rule allocates x from unknown source to m; if x € R;, where

Ri = [ {xl(ps — )" =7 (x = (s + p5)/2) > O} (2.1)
j#i

Let the squared Mahalanobis distance Afj between populations n; and 7; be
(p; — pj)TE_l(pi — ;). Then the misclassification probability, for x € m;, under
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the allocation rule (2.1) is
MP, =1- G(b_y), (2:2)

where b_; = (bila . ,bm‘_l, bz’,i-}—l, .. ,bim)T and bij = Aij/?,. Here G(b_i) is the
cumulative probability under multinormality, that is, P[N;z(z; < b;;)], where
z;’s are standard normal random variables with p; = cov(zj, z) = (A%j +A% -
A?k)/(2Aiink)‘ See Proposition 2.1 of Fung (1996) for details. The overall mis-
classification probability is defined as EMP =" | MP;/m.

Let x; (¢t = 1,... ,n) be the random sample from p-variate normal distribution
Np(py, ) if x4 is coming from 7. Let Iy be the index set of observations coming
from 7, and the indicator function Iy (t) be one if ¢ € I and zero otherwise. Then
the maximum likelihood estimator of X is

5= L(t)(x - %) (xe — %)/,

k=1t=1

where X, is the sample mean vector of m.

Let w = (wy,...,w,)T be a given n by 1 vector of perturbations. We con-
sider the perturbation model in which the tth observation x; coming from 7y is
perturbed according to

X ~ Np(uk’z/wt)a (23)

fort =1,...,n (Kim, 1996). The perturbed model reduces to the unperturbed
model when w = 1, = (1,...,1)T of order n. The perturbation vector can be
expressed as wy = 1 + al; (t = 1,...,n), where scalar a indicates the magnitude
of the perturbation in the direction I = (I1,... ,I,)T.

Let 6 be a parameter of interest, for example M P; or EM P. The maximum
likelihood estimator of 8 under the perturbed model is denoted by §(w) Then the
(n+1) by 1 vector 7(w) = (w7, 9(w))T forms a surface in the (n+1)-dimensional
space as w varies over a certain space. The direction vector of the maximum
slope of a path on the surface 7(w) at a = 0 is considered for investigating the
local behaviour of observations for the estimator of 8. However, it will be shown
in Section 3 that for the misclassification probability in multiple discriminant
analysis the direction vector of the maximum slope is essentially the same as the
empirical influence function. The direction vectors corresponding to relatively
large local curvatures of the surface at a = 0 provide information about influential
observations and outliers. It is main diagnostics that observations corresponding
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to significantly large direction cosines of the direction vectors in its absolute value
can be influential (Wu and Luo (1993)).
The influence of observations on 6 can be investigated as follows. The first

~

and second order partial derivatives of 6(w) with respect to a evaluated at a =0

are
96(w) [ 88(w)
Oa - Z( Ow, brs
a=0 r=1 w=1,
826(w) " & [ 0%0(w)
T 0a? N Z Z ( OwOw, brls:
a=0 s=1r=1 w=1,

The direction vector of the maximum slope of a path on the surface 7(w) at a = 0
becomes lgope = 6 / (GTQ)I/ 2 by the Cauchy-Schwarz inequality, where 0 is the n
by 1 vector whose rth component is Bg(w) /0w, |w=1, . The curvature and its
associated direction vector of the surface at w = 1, (refer to equations (2.2) to
(2.5) in Wu and Luo (1993)) are obtained by solving the generalized eigenvalue
problem

where U is the n by n matrix having 62§(w) JOwsOw, |w=1, asits (r, s)th element,
V= (1+ 9T9)1/2(In + QQT), and I, is the identity matrix of order n. The
curvature of the surface is given by the eigenvalue in (2.4) and the direction
vector [ is its associated eigenvector of unit length. This comes from the fact
that the curvature is equivalent to the value of [T UL/IT VL.

Equation (2.4) provides a way of classifying influential observations by eigen-
vector directions. Let e and Iz, be the eigenvectors corresponding to the
largest and the second largest absolute eigenvalue in (2.4). Then the scatter plot
of U0z versus Iz may be helpful in finding large direction cosines of direction
vectors corresponding to relatively large local curvatures.

3. DERIVATION

In multiple discriminant analysis, the parameters of interest are the squared
Mahalanobis distance Afj between m; and n;, and the misclassification probability
M P; for an observation coming from #;. They all involve »~!and py for k =
1,...,m. Hence to get the local influence measures obtained by solving the
generalized eigenvalue problem (2.4), we need the first and second order partial
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derivatives of the perturbed maximum likelihood estimators f,(w),S(w) and
S(w)~! evaluated at w = 1,,.

The maximum likelihood estimators of g}, ¥ under the perturbed model (2.3)
are obtained as

Br(w) = Zwtxt/zwta (3.1)

tel tely
S(w) = Y. ) wele(t)(x: — (W) (x¢ = (W) /n. (3.2)
t=1 k=1

By differentiating equations (3.1) to (3.2) with respect to w, and putting w = 1,,
the first order partial derivatives of i, (w) and S(w) evaluated at w = 1, are

given by
~ Ophy(w _
e = | = s (3.)
IS(w
s, = B L = x0T ()
Wr w=1,

where ny is the number of observations coming from m;. Further differentiation
gives the second order partial derivatives evaluated at w = 1, as

0, (w
ﬁk,rs = 88—511:% 1 = -Ilc(r)lk(s)(xr + X5 — 25(—/6)/”%7 (3'5)
S, = - e - )T+ (xR~ R (3
k

In what follows, such expressions as the subscripts r and rs of an estimator
are interpreted as the first and second order partial derivatives of the perturbed
maximum likelihood estimator evaluated at w = 1,,, respectively.

Furthermore, the first and second order partial derivatives of S(w)~! are
casily found by 8S(w)~!/dw, = —S(w) " }(dS(w)/0w,)S(w). From (3.4) and
(3.6), we obtain

s7! = -s7!s,87 (3.7)
1 _ _ _ _ _ -
Sr_s1 = ﬁ@kk’,rss 1[(xr — X)) (x5 — xk’)T + (x5 — Xpr ) (%7 — xk)T]S !
-s71s,,871, (3.8)

where @grr rs = (X — Xi) T S™H (x5 — Fr ) L () T ().
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For getting the local influence measures for the misclassification probability
]\7[731-, we begin to derive the first and second order partial derivatives of the per-
turbed maximum likelihood estimator Kfj (w). By the invariance of the maximum
likelihood estimator, we get

AL(w) = (fi;(w) — B (w)TS(w) 7 (B (w) — Fi;(w)). (3.9)

The chain rule of differentiation and equations (3.3) to (3.8) yield

By = vinr | (00 = 10) = 2] 310)

A’L2J rs — 2 ('(/)‘ij r 1/}1116 S)(I (T‘) ( ))Ik (T)Ik (6’) + _¢1]k r1/}z]k s

1 1 1
+20kks rs [n—k(fi(r) = I;i(r)) - Ewijk,r] [E;(Ii(s) —1I;(s)) - E":bijk',s] (3.11)
where k. = (%, — %) TS ™1, — %) Iie(r).
Under the perturbation scheme (2.3), the misclassification probability (2.2)
can be written as

MPy(w) =1 - G(b_i(w)), (3.12)

where B_i(w) = (E,l(w), e ,/Bi,i_l(w),/gi,i+1(w), e ,/l;im(vz))T, and Gg\) is the
estimated cumulative probability. Hereafter the notation G; means G(b_;(w)).
To get the local influence measure for ]\//17%, we need the first and second order
partial derivatives of ]\//I-Y’l(w) evaluated at w = 1,. By the invariance of the
maximum likelihood estimator and the chain rule of differentiation for (3.12), we
get

)

MP;, = @ i (3.13)

rPlr—i

m
i Dig

where éi’j = 8@i/83ij(w)lw=1n = f~--ff(z_ij,3ij)dz_ij, and 'D_ij = {y =
(ye) € R™2lyp < b,k = 1,...,m,k # i,k # j}. Here f(-) is the joint density
function of the (m — 1)th order multinormal random variable with zero mean
vector and the (j, k)th covariance element pji, and z_;; denotes the (m — 2) by

T
1 vector such as (21, .. ,Zi=1, Zit1,- -+ s Zj—1s Zj41s- - »Zm) -
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Furthermore, the second order partial derivatives of J\//I?)Z(w) with respect to
wy, we evaluated at w =1, is

m m A2 A mo 32‘ A2 B
_ ZJ, zk s ij,rs ijreig,s
Pipg ==Y % —2=2G 5 - Gy ( = . (3.14)
j#i k#i 16A13Azk i 4Aij 8Af’

where ai,jk = 82§i/83ik(w)33ij (w)|W 1, Here G”k becomes the (m— 3) dimen-
sional integral of the function f(z_g;k, b”, bzk) over D_;;, if j # k and 8G; J/Bblj,
if = k, where D_;j;, is similarly defined as D_;;.

The first and second order partial derivatives for the perturbed overall mis-
classification probability at w = 1,, are given by E/M\Pr = ", ]\7[73“ /m and
EMP,, = i A/J?’i,rs/m, respectively.

In particular, when m = 3 we can obtain the explicit formulas for é\i,j and
ai’jk as following

A R
Gi,j = / fk:(z b, )dz
= (21) 2 exp(=B3,/2)® ((uwr = Bisijer) /1 = )

kak,E]) if j#F,
12 b,]

G .
1,7k f ik! fk)' z, b’LJ)_Lk——i_ if ] = k,

where fkl (z, bij) = (ll —ﬁ?k,|47r2)—1/2 eXp[—(Z - 2bijﬁjk'2+/b\§j)/(2(l —-ﬁ?k,))] and

®(-) is the cumulative probability function of the standard normal variate. Here,

j #1i,k # 1 and k¥ is neither i nor j. Furthermore, we have for j = k,

B2 T - RY)
A 5.8 PJk' b (b — bijpi)
Gz,]k = bz]Gz,] o (1 _ 2 )1/2 exp D) 2(1 — ﬁ?k,)

In case m = 2, since am- = ¢(3ij) and @i,jj = —¢(Eij)3ij7 where ¢(-) is the
probability density function of the standard normal variate, the equations (3.13)
and (3.14) become (20) and (21) of Jung et al. (1997), respectively.

Fung (1996) calculated the empirical influence functions for A2 and MP; as
following. For x, € my,

k(A% — 92, ) /n, if i k,j # K,
I(x,,A%) = S mpA%/n+ Wi, — nidy,/n, i i=k, (3.15)
nkA2 /n— 21/)ka r nkd)?jk Sn, i §j =k,
S 11 1,1 Aim I T'vaz?'
I(XT, MP@) - Z 8G(b1.l: 1a i+1, »b ) (X J) ) (316)

i Bb” 4Ai]’
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Comparing (3.10) with (3.15) gives that Zi?m = I(x,, ﬁfj)/nk—ﬁfj/n for x, com-
?j’r is equivalent to I{x,, A?j), up to constants. It implies
that lspe for 3% gives the same information as the empirical influence function
I(x,, ﬁfj) Furthermore, comparison (3.13) with (3.16) yields that I(x,, 1\71731) is
proportional to ]\ﬁi,r, so we conclude that the empirical influence function on
the overall misclassification probability provides the same influence information

as the first order local influence method.

ing from m,. That is, A

4. NUMERICAL EXAMPLE

The local influence method is applied to the famous iris data (Johnson and
Wichern, 1992, p. 566) for our illustration. For clarity only two variables, sepal
width and petal width, are selected so that we can easily detect the sources of
influence from the scatter plot of the data. The observations are labelled as 1 to
50 for iris setosa, 51 to 100 for iris versicolor and 101 to 150 for iris virginica.
The local influence method is compared with the influence function method.

First the local influence method was conducted based on the estimates of the
misclassification probabilities, ]\7[?31 (i=1,2,3) and EMP . Here 1\/4[731, J\/ITDZ,
]\//I\Pg mean the misclassification probability for iris setosa population, iris versi-
color, iris virginica, respectively. The scatter plot of I, and lse. gave the same
behaviour as the index plot of g4 for all J\/J?’z and EMP. As described in
the previous section, the index plot of lyepe gives the same information as the
influence function method. Thus the results from the first and second order local
influence method agree with those of the influence function method. We omit
the results.

To illustrate the effectiveness of the local influence method, observation 51
such that (3.2, 1.4) is changed to (7.2, 1.4). The modified data together with
each sample mean denoted by M and the discriminant lines are given in Fig. 4.1.
We find that observations from iris setosa lie far from the other two populations.
Fig. 4.1 reveals that observation 51 can be regarded as an outlier from 7o, and
observations 51, 71, 78, 120, 130, 134 and 135 are misclassified. Observations
69 and 84 are located near the discriminant plane for 7, and w3. These obser-
vations may be influential, for observations near the discriminant plane may be
misclassified by a minor change.

The first order local influence measures for each Jﬁz (i =1,2,3) are investi-
gated. The absolute magnitude |]\/47’ 1| (r=1,...,150) is much smaller than the
other two group measures. So we omit the index plot of 14, for ]/M?l. The first
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Fig. 4.1: The modified data of sepal and petal width of iris setosa, iris versicolor

and iris virginica.
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. 4.2: Index plots of lgepe for the modified iris data. (a) 1\7733 (b) EMP
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Fig. 4.3: Scatter plots of Uy, versus Iy, for the modified iris data. (a) ]\/4733 (b)

EMP
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order local influence measures ]/MTDZJ and ]l//[?)g, are nearly identical, and so only
the maximum slope vector I, for ]TJ.\P;:, is plotted in Fig. 4.2(a). For the overall
misclassification E/.M\P, the index plot of ly4p. is given in Fig. 4.2(b). In these
index plots most of misclassified observations are detected, however observations
51, 69, 84 may not be identified. It indicates that the first order local influence
measure is not sufficient for detecting influential observations and outliers.

Finally the second order local influence method is performed for M P3 and
EMP. For M Py the first four absolutely largest eigenvalues of (2.4) are -0.00171,
0.00159, -0.00157, -0.00075. The fourth value is more or less smaller than the
other values. Thus the scatter plots of 0z versus lgec, lmas versus by, and g,
versus Iy, may be helpful for detecting influential observations and outliers. Here
the direction vectors I ez, Lsec, Iinr are the eigenvectors corresponding to -0.00171,
0.00159, -0.00157, respectively. Because all three scatter plots have similar re-
sults, only the scatter plot of 1,,,,, versus Iz, of ]\7733 is presented in Fig. 4.3 (a).
For E/]\ﬁ, the eigenvalues of (2.4) are arranged as -0.00132, -0.00114, 0.00107,
-0.00042. By the same reason above, the scatter plot of l,,,, versus I, is pre-
sented in Fig. 4.3 (b). Observation 51 is clearly separated from the others in both
scatter plots of Fig. 4.3. Besides observation 51, it can be observed that observa-
tions 71, 78, 120, 130, 134, 135 have high local influence, and they are possible
candidates for influential observations. Recall that observations 51, 71, 78, 120,
130, 134, 135 are misclassified. And also observations 69, 84 are located in the
outer side of Fig. 4.3. The scatter plot of 1,5, versus s, would provide useful
information about the region near the discriminant plane. In summary, the scat-
ter plots of la5 versus lge. for J\//I733 and EMP identify respectively observation
51, 69, 84 (not detected by l,pe) as well as six misclassified observations.

This example shows that the scatter plot of 1,4, versus lse. in multiple dis-
criminant analysis is very effective, in that it gives influence information about
misclassified observations, outliers and observations near the discriminant plane.
However, the influence function method is not sufficient for detecting influential
observations and outliers.
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