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SUPPORT VECTOR MACHINE USING K-MEANS
CLUSTERING

S. J. LEg!, C. Park?, M. Juun® anD J-Y. Koo?

ABSTRACT

The support vector machine has been successful in many applications
because of its flexibility and high accuracy. However, when a training data
set is large or imbalanced, the support vector machine may suffer from sig-
nificant computational problem or loss of accuracy in predicting minority
classes. We propose a modified version of the support vector machine using
the K-means clustering that exploits the information in class labels during
the clustering process. For large data sets, our method can save the com-
putation time by reducing the number of data points without significant
loss of accuracy. Moreover, our method can deal with imbalanced data sets
effectively by alleviating the influence of dominant class.
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1. INTRODUCTION

The support vector machine (SVM) introduced by Cortes and Vapnik (1995)
has been successful in a wide range of applications from various pattern recog-
nition tasks to cancer classifications. The success of the SVM can be ascribed
to its flexibility and classification accuracy. However, when faced with large or
imbalanced data where the distribution of class labels in training data is severely
unbalanced, the SVM may have some problems in its application.

The computation of the SVM is based on quadratic programming (QP) whose
computing time depends on the number of training data. To speed up its compu-
tation without loss of classification accuracy, several methods have been proposed.
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Preprocessing by k-nearest neighborhood to select data points close to the de-
cision boundary is one of them (Shin and Cho, 2003). We note that the class
imbalance problem is more serious than the computational problem for large data
sets because classification accuracy may drop significantly in predicting minority
classes. Re-sampling and weight-control methods have been applied to tackle the
class imbalance problem (Akbani et al., 2004).

The SVM using the K-means clustering (KM-SVM) has been proposed to
speed up the computing time without loss of accuracy in Wang et al. (2005).
We propose to use the class information during the process of clustering. Our
method can achieve faster computing time than the SVM by reducing the number
of data points without significant loss of classification accuracy. Moreover, it can
alleviate the influence of dominant class by exploiting class information during
the process of clustering.

The paper is organized as follows. Section 2 reviews the SVM briefly. Section
3 describes the KM-SVM algorithm. In Section 4, we compare the performance
of our method with other variants of the SVM on benchmark and simulated data
sets, ensured by conclusions in Section 5.

2. SUPPORT VECTOR MACHINE

Consider a linear classification problem. Let (z1,¥1),...,(zn,yn) be a train-
ing data set such that z; € X C R™ and y; € {—1,+1} fori =1,..., N, where
X denotes an input space. x; and y; are called an input and a class label, re-
spectively. Denote the inner product and the norm in R™ as (-,-) and || - ||,
respectively. The classification is performed by constructing f(z) = (w,z) + b,
mapping from X — R, such that its sign, sign(f), decides the class assignment
of an input x € X. Here w and b are called the weight vector and the bias,
respectively. To obtain the solution w, the SVM solves the following quadratic
optimization problem:
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where C' > 0 is the regularization parameter. Usually we solve the Wolfe dual
form of the primal form (2.1):
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N
subject toZyiai =0, Vi:0<o; <C,
i=1
where o; is a Lagrange multiplier corresponding to ;. Let &;, i = 1,..., N, be
the solution of (2.2). Then the solution function is

fl@) =" @wilai, ) +. (2:3)
=1

Since the solution can be represented in terms of non-zero @;’s alone, those
nonzero &;’s are called the support vectors. b is determined via the Karush-
Kuhn-Tucker boundary conditions. Nonlinear classification can be implemented
by replacing the inner product (-, -) by a nonlinear kernel k(:, ). By solving the
dual optimization problem in (2.2), the solution for the nonlinear classification
problem has an equivalent form as (2.3) with the inner product replaced by the
kernel. An example of commonly adopted kernel in nonlinear classifications is
the radial basis function kernel, defined as k(x,z’) = exp(—v|lz — #'||?), where
v > 0 is a scaling parameter. For details, see Vapnik (1998) or Cristianini and
Shawe-Taylor (2000).

3. K-MEANS SVM

The K-means clustering (Macqueen, 1967) is one of the most popular clus-
tering methods. The idea of the K-means clustering is very simple. Given a data
set, we assume that there is an unobserved “cluster ID” corresponding to the
data set. This can be modeled through a mixture model. The K-means cluster-
ing algorithm finds a solution by maximizing the likelihood. This algorithm can
deal with continuous variables only because it is based on the squared Euclidean
distance. It finds local optima by minimizing the sum of the distance between
each data point and its closest cluster center. The number of clusters K should
be given as an input.

The support vector machine using the K-means clustering is a sequential
algorithm combining the SVM with the K-means clustering. First the K-means
clustering algorithm is applied to the training data. For given K, the K-means
clustering yields clusters Cy,...,Ck. Foreach i = 1,..., K, the class label ¥; for
the center of C; is determined by majority voting. Then we construct a classifier
on the cluster centers using the SVM. Note that the computing time for the SVM
is closely related with the number of support vectors. The application of the K-
means clustering reduces the number of data points, which in turn reduces the
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number of support vectors. Hence the KM-SVM has an advantage over the SVM
in its computational time.

Note that the K-means clustering is an unsupervised learning algorithm that
uses only the information contained in the inputs without using the information
in the class labels. The method proposed in Wang et al. (2005). applies the
K-means clustering to the whole training data directly. Let us call the method
the global KM-SVM. Our method, called the by-class KM-SVM, applies the K-
means clustering for each class separately. In our method, new class label for each
cluster center is determined by the class to which the cluster belongs. By doing so,
different data structure in different classes can be considered. We expect that our
method may improve the classification accuracy of global KM-SVM by exploiting
the information in the class labels while retaining the merit of the global KM-
SVM, i.e., saving the computing time by reducing the number of data points.
Furthermore, our idea can be useful for data with class imbalance problem. This
will be illustrated in Section 4.

For the KM-SVM algorithms, the number of clusters, denoted by K, is a
parameter to be estimated in addition to tuning parameters for the SVM such as
the regularization parameter C from (2.1) and the kernel parameter + (Cristianini
and Shawe-Taylor, 2000). As an abuse of notation, the proportion(%) denotes
the number of clusters with respect to the size of original training data. The
following is the algorithm of the KM-SVM’s:

Step 1  Choose a set of tuning parameters (C,~, K).

Step 2 Run the K-means clustering on training data.

Step 3  Assign new class label g for each cluster center.

Step 4 Fit the SVM on the cluster centers.

Step 5 Calculate the test error rate.

Step 6 Iterate Step 1-5 over prespecified combinations of parameters.
Step 7 Construct the optimal classifier.

The difference of the global KM-SVM and by-class KM-SVM lies in Step 2
and Step 3. In the by-class KM-SVM, the number of clusters assigned to each
class is proportional to the class size in the original training data.

4., EXAMPLES

4.1. Benchmark data

We analyzed three benchmark data. sets, ionosphere, wdbc and pima-indians-
diabetes from the UCI Machine Learning Repository (http://www.ics.uci.edu/
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~mlearn). They are binary classification data sets without any missing values.
Table 4.1 describes characteristics of these data sets. Our experiments were
carried out on 1.40Ghz Pentium PC with 768MB of main memory and our code
was written in R language (http://http://www.r-project.org/). We adopted 5-
fold cross validation (CV) to select the number of clusters K and the tuning
parameters C and v. Each data set was partitioned at random into training and
test data with the ratio of (2 : 1). To assess the sampling variability, the process
of random partitioning were replicated 100 times. We applied the radial basis
function kernel introduced in Section 2. The optimal parameters, (C,#, K), were
obtained by grid search on 275,274 ... 2% for C and 2710,27°,...,2%0 for ~.

TABLE 4.1 Description of the data sets

Data set | No. of data | No. of feature | No. of majority/minority class
ionosphere 351 34 225/126
wdbe 569 30 357/221
pima 768 8 500/268
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FIGURE 4.1 Computing time in seconds for optimal models.

Figure 4.1 shows the computing time for optimal model over 100 replications.
Since the computing time is proportional to the number of data points, the KM-
SVM’s take much less computing time than the SVM as the size of data set
increases. For example, on the largest data set, pima data, the global KM-SVM
takes only 16% of the standard SVM fitting time. As we expected, the SVM was
slightly better than KM-SVM’s in terms of test error rate.
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TABLE 4.2 The mean and standard error of test error rate and the number of support vectors
for UCI data sets

Data set standard SVM | global KM-SVM | by-class KM-SVM
ionosphere ERR 0.060(0.002) 0.076(0.003) 0.075(0.005)
No. of sv | 105.9(3.46) 58.7(2.24) 73.2(1.93)
wdbc ERR 0.026(0.001) 0.031(0.001) 0.030(0.001)
No. of sv 62(1.84) 43.6(1.48) 39.3(1.60)
pima ERR 0.23(0.0024) 0.25(0.0027) 0.24(0.0029)
No. of su | 290.9(2.16) 132.4(5.84) 142.8(4.31)

In Table 4.2, the mean error rate of the by-class KM-SVM was almost same
as that of the standard SVM and the KM-SVM’s used less support vectors than
the standard SVM. On ionosphere data, the global KM-SVM reduced 45% of
support vectors with only 1.6% of loss of accuracy with respect to the standard
SVM. For wdbc data, the reduction of support vectors by the by-class KM-SVM
was about 37% while its loss in error rates was 0.4%. Pima data showed 51%
reduction of support vectors and 1% of loss of accuracy by the by-class KM-SVM.
In terms of test error, our by-class KM-SVM performed consistently better than
the global KM-SVM for the benchmark data sets. Compared to the standard
SVM, the by-class KM-SVM reduced the number of support vectors. However,
the relative gain in computing time of the by-class KM-SVM over the global KM-
SVM is not clear. As the results suggest, our method may be useful in analyzing
large data sets because it reduces the computing time without significant loss of
classification accuracy. In particular, our method seems to classify a bit more
accurately than the global KM-SVM.

4.2. Imbalanced data

Recently, there has been increasing interest in class imbalance problem be-
cause of the increasing need for performing classification tasks in many applica-
tions with imbalanced class distribution. The areas of application include gene
profiling, fraud detection, and medical diagnosis. One might consider random
sampling or weighting misclassification cost according to the class size. However,
these methods may not be sufficient.

In general, the SVM is believed to be more resistant to the class imbalance
than other classification methods. However, it may also fail if the class distribu-
tion is severely imbalanced because the optimal hyperplane tends to lean to the
side of majority class. In this subsection, we illustrate that our KM-SVM has an
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advantage over other methods in the presence of class imbalance in training data
through a simulation.

We consider a simple two-class imbalanced data set. Positive and negative
classes are assumed to follow independent bivariate normal distributions with
different mean vectors p; = (0.5,0) and pa = (—0.5,0) and common covariance
matrix I. We generated random samples of size 1000 with the proportion of the
majority class from 70% to 99%. The ratio of training, validation, and test data
set was (3 :1 :1). The regularization parameter C' was determined through grid
search on 27°,274 ... 25, To assess the variability, this process was repeated 100
times. For imbalanced data, we applied the K-means clustering on the majority
class alone. We compared the performance of our KM-SVM, standard SVM, and
under-sampling SVM (US-SVM) (Akbani et al., 2004). Since the Bayes decision
boundary is linear, we have adopted the linear kernel.

In general classification tasks, the sensitivity, defined as the accuracy on the
positive class, and the specificity, the accuracy on the negative class, have been
used to evaluate the performance of a classifier. We have adopted the balanced
correct-classification rate (BCR), defined as the product of the sensitivity and
the specificity, as the measure of accuracy.

TABLE 4.3 The mean and standard error of BCR

ratio standard SVM US-SVM KM-SVM
(99:1) 0 0.1530(0.024) | 0.4261(0.031)
(95:5) 0 0.4004(0.015) | 0.4940(0.011)
(90:10) 0 0.4285(0.001) | 0.4723(0.008)
(80:20) 0 0.4593(0.007) | 0.4783(0.005)
(70:30) | 0.2140(0.019) | 0.4656(0.006) | 0.4755(0.005)

Table 4.3 shows the results of 100 replications for the settings of defined
parameters. In terms of BCR, our KM-SVM outperformed the SVM and US-
SVM. For the ratio (99:1), the performance of the US-SVM significantly dropped
(0.1530), while our KM-SVM showed similar performance (0.4261). For severely
imbalanced cases, the standard SVM assigned all test data to the majority class.
The performance of under-sampling method was competitive in this example.

5. DISCUSSION

We introduced the KM-SVM adopting the K-means clustering. According
to the assignments of class labels for cluster centers, two different versions of
the KM-SVM have been considered. The results illustrate that our method can
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improve the classification accuracy of the original KM-SVM by exploiting the
information in class labels and it uses less support vectors than the SVM by
reducing the number of data points through clustering. In this sense, our KM-
SVM can be a competitive classification method for large data sets. In addition,
we illustrated through a simulation that our method can also be useful for data
with class imbalance problem.

A problem with our method is that our method may be sensitive to the
choice of initial centers. More stable method of data reduction than the K-means
clustering may be considered. Also, it would be worthwhile to investigate how
much ensemble methods such as bagging or boosting can improve the predictive
performance of our KM-SVM. We leave these issues as future work. /
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