• Title/Summary/Keyword: Influence Boundary

Search Result 990, Processing Time 0.033 seconds

Influence of Flow Conditions on a Boundary Layer to the Near-Wake of a Flat Plat (평판 경계층 유동조건이 근접후류에 미치는 영향)

  • Kim, D.H.;Chang, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1625-1630
    • /
    • 2004
  • An experimental study was carried out to investigate influence of flow conditions on a boundary layer to the near-wake of a flat plate. The flow condition in the vicinity of trailing edge that is influenced by upstream condition history is an essential factor that determines the physical characteristics of a near-wake. Various tripping wires were used to change boundary layer flow condition of upstream at the freestream velocity of 6.0 m/sec. Measurements of the boundary layer and near-wake according to the change of upstream conditions were conducted by using both I-probe(55P14 for boundary layer) and X-probe(55P61 for wake). Normalized velocity profiles of the boundary layer were shown the flow types such as laminar boundary layer, transition, and turbulent boundary layer at 0.95C from the leading edge. The velocity and turbulence intensity profiles of the near-wake for the case of laminar boundary layer at the flat plate surface exhibited a defect and a double peak showing perfect symmetry, respectively.

  • PDF

Effects of Slope Location on the Boundary Condition in the 1g Shaking Table Test (1g 진동대시험에서 사면의 위치에 따른 경계조건 영향평가)

  • Jeong, Sugeun;Jin, Yong;Kim, Daeheyon
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.535-545
    • /
    • 2022
  • Improving the stability of the ground in seismic design requires an understanding of the dynamic behavior of the ground under seismic loads. The shaking table test is an important methodology to provide this understanding. This study aimed to assess the influence on boundary conditions, as they are among the most important factors affecting the test. This was achieved by testing the influence of boundary conditions on the seismic responses of model slopes at different locations in the testing apparatus. A model slope was fabricated at different locations in a laminar shear box, and the influence of the boundary conditions was then measured. Each model slope was created at 100, 50, and 25 cm from the soil wall, and sine wave seismic loads of the same size were inputted. The results confirmed that the acceleration was amplified by the influence of the boundary in the case of the slope being located 25 cm from the boundary, whereas the influence of the boundary conditions decreased when the slope was located at 50~100 cm.

The Effects of Franchisor's Influence Strategies on Franchisee's Relationship Satisfaction and Boundary Spanning Behaviors in the Restaurant Industry (외식 프랜차이즈 본부의 영향 전략이 가맹점의 관계 만족과 영역 초월 행동에 미치는 영향)

  • Yoo, Young-Jin;Lee, Tae-Yong;Ha, Dong-Hyun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.21 no.2
    • /
    • pp.284-297
    • /
    • 2011
  • The purpose of this study was to investigate whether a franchisor's influence strategies could affect a franchisee's relationship satisfaction, which in turn could affect their boundary spanning behaviors. The constructs of influence strategies included promise, recommendation, information exchange, request, threat, and legalistic plea. The boundary spanning behaviors were external representation, internal influence, and service delivery. The sample used for this research consisted of store owners or managers of franchisee restaurants in Korea. A total of 605 questionnaires were analyzed using SPSS/$PC^+$ and LISREL. Empirical research findings were that (1) promise, recommendation, and legalistic plea affected relationship satisfaction, and (2) relationship satisfaction influenced external representation, internal influence and service delivery. However, information exchange, request, and threat did not affect relationship satisfaction. Based on these findings, franchisors were recommended to provide motivations to franchisees if the former wants to receive help from the latter.

Influence of Modeling Errors in the Boundary Element Analysis of EEG Forward Problems upon the Solution Accuracy

  • Kim, Do-Won;Jung, Young-Jin;Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.10-17
    • /
    • 2009
  • Accurate electroencephalography (EEG) forward calculation is of importance for the accurate estimation of neuronal electrical sources. Conventional studies concerning the EEG forward problems have investigated various factors influencing the forward solution accuracy, e.g. tissue conductivity values in head compartments, anisotropic conductivity distribution of a head model, tessellation patterns of boundary element models, the number of elements used for boundary/finite element method (BEM/FEM), and so on. In the present paper, we investigated the influence of modeling errors in the boundary element volume conductor models upon the accuracy of the EEG forward solutions. From our simulation results, we could confirm that accurate construction of boundary element models is one of the key factors in obtaining accurate EEG forward solutions from BEM. Among three boundaries (scalp, outer skull, and inner skull boundary), the solution errors originated from the modeling error in the scalp boundary were most significant. We found that the nonuniform error distribution on the scalp surface is closely related to the electrode configuration and the error distributions on the outer and inner skull boundaries have statistically meaningful similarity to the curvature distributions of the boundary surfaces. Our simulation results also demonstrated that the accumulation of small modeling errors could lead to considerable errors in the EEG source localization. It is expected that our finding can be a useful reference in generating boundary element head models.

Case Study of Variations in the Tropical Atmospheric Boundary Layer According to the Surface Conditions (지표 조건에 따른 열대 대기경계층 변화의 사례 연구)

  • Byoung-Hyuk Kwon
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.337-342
    • /
    • 2001
  • The Rondonia Boundary Layer Experiment (RBLE-II) was conceived to collect data the atmospheric boundary layer over two representative surface in the Amazon region of Brazil; tropical forest and a deforested, pasture area. The present study deals with the observations of atmospheric boundary layer growth and decay. Although the atmospheric boundary layer measurements made in RBLE-II were not made simultaneously over the two different surface types, some insights can be gained from analysing and comparing with their structure. The greater depth of the nocturnal boundary layer at the forest site may be due to influence of mechanical turbulence. The pasture site is aerodynamically smoother and so the downward turbulent diffusion will be much pasture than over the forest. The development of the convective boundary layer is stronger over the pasture than over the forest. The influence of the sensible heat flux is important but may be not enough to explain the difference completely. It seems that energy advection may occur from the wet and colder(forest) to the dry and warmer area(pasture), rapidly breaking up the nocturnal inversion. Such advection can explain the abrupt growth of the convective boundary layer at the pasture site during the early morning.

  • PDF

Effect of boundary conditions on modal parameters of the Run Yang Suspension Bridge

  • Li, Zhijun;Li, Aiqun;Zhang, Jian
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.905-920
    • /
    • 2010
  • Changes in temperature, loads and boundary conditions may have effects on the dynamic properties of large civil structures. Taking the Run Yang Suspension Bridge as an example, modal properties obtained from ambient vibration tests and from the structural health monitoring system of the bridge are used to identify and evaluate the modal parameter variability. Comparisons of these modal parameters reveal that several low-order modes experience a significant change in frequency from the completion of the bridge to its operation. However, the correlation analysis between measured modal parameters and the temperature shows that temperature has a slight influence on the low-order modal frequencies. Therefore, this paper focuses on the effects of the boundary conditions on the dynamic behaviors of the suspension bridge. An analytical model is proposed to perform a sensitivity analysis on modal parameters of the bridge concerning the stiffness of expansion joints located at two ends of bridge girders. It is concluded that the boundary conditions have a significant influence on the low-order modal parameters of the suspension bridge. In addition, the influence of vehicle load on modal parameters is also investigated based on the proposed model.

Influence of some key factors on material damping of steel beams

  • Wang, Yuanfeng;Pan, Yuhua;Wen, Jie;Su, Li;Mei, Shengqi
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.285-296
    • /
    • 2014
  • Material damping affects the dynamic behaviors of engineering structures considerably, but up to till now little research is maintained on influence factors of material damping. Based on the damping-stress function of steel, the material damping of steel beams is obtained by calculating the stress distribution of the beams with an analytical method. Some key influence factors of the material damping, such as boundary condition, amplitude and frequency of excitation, load position as well as the cross-sectional dimension of a steel beam are analyzed respectively. The calculated results show that even in elastic scope, material damping does not remain constant but varies with these influence factors. Although boundary condition affects material damping to some extent, such influence can be neglected when the maximum stress amplitude of the beam is less than the fatigue limit of steel. Exciting frequency, load position and cross-section dimension have great effects on the material damping of the beam which maintain the similar changing trend under different boundary conditions respectively.

Influence of Upstream State on the Interacting Turbulent Boundary Layer (相互作용하는 亂流 境界層에 대한 上流狀態의 影響)

  • 이덕봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.277-284
    • /
    • 1986
  • A numerical procedure (integral method) for calculating the interacting turbulent boundary layer is set up. With this method, some free interactions with various upstream conditions are simulated in order to investigate the influence of upstream state on the interacting turbulent boundary layer. The results obtained by this numerical simulation can be summarized as follows; Free interaction of upstream unstabilized (or separated) turbulent boundary layer is subcritical regardless of its external Mach number, while free interaction of upstream stabilized turbulent boundary layer has two different characteristics (subcritical, supercritical) according to the external Mach number.