• 제목/요약/키워드: Infinite Cylinder

검색결과 69건 처리시간 0.025초

가상 압축성 기법을 이용한 삼차원 비압축성 유동해석 코드 개발 (Development of a 3-D Incompressible Flow Solver Based on an Artificial Compressibility Method)

  • 정문승;권오준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.614-617
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulations of three dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence free flow field at each physical time step. The one equation Spalart-Allmaras turbulence model has been adopted to solve the high-Reynolds number flow fields. This method has been applied to calculate the steady flow fields around submarine configurations and unsteady flow fields around a 3-D infinite cylinder.

  • PDF

Static analysis of FGM cylinders by a mesh-free method

  • Foroutan, M.;Moradi-Dastjerdi, R.;Sotoodeh-Bahreini, R.
    • Steel and Composite Structures
    • /
    • 제12권1호
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper static analysis of FGM cylinders subjected to internal and external pressure was carried out by a mesh-free method. In this analysis MLS shape functions are used for approximation of displacement field in the weak form of equilibrium equation and essential boundary conditions are imposed by transformation method. Mechanical properties of cylinders were assumed to be variable in the radial direction. Two types of cylinders were analyzed in this work. At first cylinders with infinite length were considered and results obtained for these cylinders were compared with analytical solutions and a very good agreement was seen between them. Then the proposed mesh-free method was used for analysis of cylinders with finite length and two different types of boundary conditions. Results obtained from these analyses were compared with results of finite element analyses and a very good agreement was seen between them.

반응 표면법을 이용한 2 단 분사 PCCI 디젤엔진의 운전조건의 영향도 평가에 대한 연구 (Effects of optimal operating conditions on 2-stage injection PCCI diesel engine using Response Surface Methodology)

  • 이재현;김형민;이기형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3044-3048
    • /
    • 2008
  • It is well known that Premixed Charge Compression Ignition (PCCI) diesel engines according to many technologies such a change in injection timing, multiple injection strategy, cooled EGR, intake charging and SCV have the potential to achieve homogeneous mixture in the cylinder which result in lower NOx and PM as well as performance improvements. This may generate merely the infinite number of experimental conditions. The use of Response Surface Methodology (RSM) technique can considerably pull down the number of experimental set and time demand. This paper presents the effects of both fuel injection and engine operation conditions on the combustion and emissions in the PCCI diesel engine system. The experimental results have revealed that a change in fuel injection timing and multiple injection strategy along with various operating conditions affect the combustion, emissions and BSFC characteristics in the PCCI engine.

  • PDF

음향공명 방음벽 연구 (A Study on the Sound Resonating Barrier)

  • 이준신;김태룡;손석만;박동수
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.659-664
    • /
    • 2001
  • Noise barriers are widely used to reduce the sound level propagating from highways, railways or factories to residential areas. The reduced noise level at a receiver point is then determined by the diffracted waves around the edge of the barrier as well as by the transmitted waves through the barrier. For proper usage, many studies either theoretical or experimental have been made with the objective of precisely predicting the acoustic field and improving the noise attenuating properties of barriers. In this study, a simple scattering model, a line acoustic source scattered by an infinite cylinder, is introduced to simply investigate the sound attenuation efficiency of a sound-resonating barrier. From this model study, it is observed that the sound-resonating barrier can be used as a good sound-shielding element especially for the pure-tone noise generated from the transformer. Large sound-attenuation is achieved by applying the sound-resonating barrier to the large transformers in a substation.

  • PDF

동전모양 균열이 존재하는 이상복합체의 에너지해방율 산정 (Determination of Energy Release Rate of Penny-shaped Interface Crack on Bimaterial Cylinder)

  • 양성철;서영찬;박종원
    • 한국전산구조공학회논문집
    • /
    • 제15권3호
    • /
    • pp.389-398
    • /
    • 2002
  • 동전모양의 균열이 이상복합 실린더 계면에 존재하는 혼합모드 조건(I, II)에 대해 유한요소법을 사용하여 에너지해방율을 구하였다. 두재료의 탄성비와 노치율을 변화시켜 상업용 FEM 프로그램인 ABAQUS로부터 얻은 결과를 가상 균열법과 J 적분법에 적용하였으며 에너지해방율을 구하여 무차원함수로 표현하였다. 모드 II의 무차원 에너지해방율($\sqrt{G_{II}E^*}/\sqrt[p]{\pi a}$)은 균열길이와 탄성비가 증가되면서 그 값이 증가됨을 알수 있었다. 반면, 모드 I의 무차원 에너지해방율($\sqrt{G_{I}E^*}/\sqrt[p]{\pi a}$)은 탄성비가 증가하면서 그 값이 감소하며, 두재료의 탄성비가 3 이상인 경우에 균열길이가 증가되면서 무차원 에너지해방율이 감소하다가 다시 증가하게 나타났다. 또한 수치해석된 결과치를 무한판 실린더의 응력확대계수에 대한 정해와 비교하여 본 해석의 신뢰성을 확보하였다.

주기적으로 배열된 회전하는 원형 실린더를 이용한 채널유동의 열전달 증진 (Heat Transfer Enhancement in Channel Flow by a Streamwise-Periodic Array of Rotating Circular Cylinders)

  • 정태경;양경수
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.999-1008
    • /
    • 2014
  • 채널 내 회전하는 원형 실린더가 주기적으로 존재하는 경우 회전하는 실린더를 지나는 유동에 의한 채널 내 유동 특성 및 채널 벽에서의 열전달 효율증진을 파악하였다. 본 연구에서 사용된 유동 모델은 마이크로 채널, 열교환기 등에서 평판 사이의 열전달 효율을 높이기 위해 흔히 사용되는 와류 생성기의 가장 단순한 모델이다. 실린더와 채널 벽과의 간격 및 Re 수를 변화해가며 수치적 해석을 수행하였으며, 직교좌표계에서 채널 내 원형 실린더를 구현하기 위해 가상경계법이 적용 되었다. 채널 내 실린더가 회전하고 있는 경우, 실린더가 정지해 있는 경우에 비해 특히 실린더와 채널 벽과의 간격이 작아질수록 채널 벽에서의 열전달 효과는 더 높은 것으로 파악되었다.

삼차원 정상/비정상 비압축성 유동해석을 위한 비정렬 혼합격자계 기반의 유동해석 코드 개발 (DEVELOPMENT OF AN UNSTRUCTURED HYBRID MESH FLOW SOLVER FOR 3-D STEADY/UNSTEADY INCOMPRESSIBLE FLOW SIMULATIONS)

  • 정문승;권오준
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.27-41
    • /
    • 2008
  • An unstructured hybrid mesh flow solver has been developed for the simulation of three-dimensional steady and unsteady incompressible flow fields. The incompressible Navier-Stokes equations with an artificial compressibility method were discretized by using a node-based finite-volume method. For the unsteady time-accurate computation, a dual-time stepping method was adopted to satisfy a divergence-free flow field at each physical time step. An implicit time integration method with local time stepping was implemented to accelerate the convergence in the pseudo-time sub-iteration procedure. The one-equation Spalart-Allmaras turbulence model has been adopted to solve high-Reynolds number flow fields. The flow solver was parallelized to minimize the CPU time and to overcome the computational overhead. This method has been applied to calculate steady and unsteady flow fields around submarine configurations and a 3-D infinite cylinder. Validations were made by comparing the predicted results with those of experiments or other numerical results. It was demonstrated that the present method is efficient and robust for the prediction of steady and unsteady incompressible flow fields.

공액근사개념과 Loubignac의 반복계산법을 이용한 국부응력장 개선에 대한 연구 (A study on the improvement of the local stress field using the theory of conjugate approximations and loubignac's iterative method)

  • 송기남
    • 대한기계학회논문집A
    • /
    • 제21권10호
    • /
    • pp.1598-1608
    • /
    • 1997
  • Based on the application of te theory of conjugate approximations and the Loubignac's iterative method in a local region, a method to improve the stress filed in a displacement-formulated finite element solution has been proposed. The validity of the proposed method has been tested through two examples : a thick cylinder under internal pressure loading and an infinite plate with a central circular hole subjected to uniaxial tension. As a result of analysis of the examples, it was found that the stress field obtained for the local region model by the proposed method approximates well for the whole domain model. In addition, it was found that because of a significant decrease in the computing time to obtain the improved stress field, the proposed method is efficient and useful for the detailed stress analysis in local regions.

DIRICHLET FORMS, DIRICHLET OPERATORS, AND LOG-SOBOLEV INEQUALITIES FOR GIBBS MEASURES OF CLASSICAL UNBOUNDED SPIN SYSTEM

  • Lim, Hye-Young;Park, Yong-Moon;Yoo, Hyun-Jae
    • 대한수학회지
    • /
    • 제34권3호
    • /
    • pp.731-770
    • /
    • 1997
  • We study Diriclet forms and related subjects for the Gibbs measures of classical unbounded sping systems interacting via potentials which are superstable and regular. For any Gibbs measure $\mu$, we construct a Dirichlet form and the associated diffusion process on $L^2(\Omega, d\mu), where \Omega = (R^d)^Z^\nu$. Under appropriate conditions on the potential we show that the Dirichlet operator associated to a Gibbs measure $\mu$ is essentially self-adjoint on the space of smooth bounded cylinder functions. Under the condition of uniform log-concavity, the Gibbs measure exists uniquely and there exists a mass gap in the lower end of the spectrum of the Dirichlet operator. We also show that under the condition of uniform log-concavity, the unique Gibbs measure satisfies the log-Sobolev inequality. We utilize the general scheme of the previous works on the theory in infinite dimensional spaces developed by e.g., Albeverio, Antonjuk, Hoegh-Krohn, Kondratiev, Rockner, and Kusuoka, etc, and also use the equilibrium condition and the regularity of Gibbs measures extensively.

  • PDF

Metal/$Al_2O_3-SiO_2$ System Interface Investigations

  • Korobova, N.;Soh, Deawha
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 SMICS 2004 International Symposium on Maritime and Communication Sciences
    • /
    • pp.70-73
    • /
    • 2004
  • The packaging of the integrated circuits requires knowledge of ceramics and metals to accommodate the fabrication of modules that are used to construct subsystems and entire systems from extremely small components. Composite ceramics (Al$_2$O$_3$-SiO$_2$) were tested for substrates. A stress analysis was conducted for a linear work-hardening metal cylinder embedded in an infinite ceramic matrix. The bond between the metal and ceramic was established at high temperature and stresses developed during cooling to room temperature. The calculations showed that the stresses depend on the mismatch in thermal expansion, the elastic properties, and the yield strength and work hardening rate of the metal. Experimental measurements of the surface stresses have also been made on a Cu/Al$_2$O$_3$-SiO$_2$ceramic system, using an indentation technique. A comparison revealed that the calculated stresses were appreciably larger than the measured surface stresses, indicating an important difference between the bulk and surface residual stresses. However, it was also shown that porosity in the metal could plastically expand and permit substantial dilatational relaxation of the residual stresses. Conversely it was noted that pore clusters were capable of initiating ductile rupture, by means of a plastic instability, in the presence of appreciable tri-axiality. The role of ceramics for packaging of microelectronics will continue to be extremely challenging.

  • PDF