• Title/Summary/Keyword: Infilled wall

Search Result 78, Processing Time 0.02 seconds

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선기술)

  • Shin, Jong-Hack;Ha, Gee-Joo;Jun, Ha-Suk;Lee, Jong-Chan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.147-155
    • /
    • 2000
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were tesed during vertical and cyclic loads simultaneously. Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio, with or without masonry infilled wall, and masonry method. All the specimens were constructed in one-third scale size. Based on the test results, the following conclusions can be made. For masonry infilled wall(IFB-1), maximum horizontal capacity was increased by 1.45 time in comparision with that of rigid frame(FB-0). For cut off masonry infilled wall (IFBC-1~3), maximum horizontal capacity was increased by 1.73~1.98 time in comparision with that of rigid frame(FB-0). For cut off masonry infilled wall(IFBG-1~3), ductility was increased by 1.48~2.08 time in comparision with that of masonry infilled wall (IFB-1).

  • PDF

Improvement and Evaluation of Seismic Resistant Performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame (철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;Lee, Hee-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.131-139
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of RC frame structures with masonry infilled wall, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame(IFWB-1~3), cumulated energy dissipation capacities were increased by 1.35~1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame.

  • PDF

Improvement and Evaluation of Structural performance of Reinforced Concrete Infilled Masonry Frame with Restraining Factor of Frame under Load Reversals (반복하중을 받는 철근콘크리트 프레임면내 조적벽체의 골조 구속에 따른 구조성능 평가 및 개선)

  • 신종학;하기주;김광연;이희종;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.541-546
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation of and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method Six reinforced concrete rigid frame and masonry infilled wall were tested and constructed in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled wall with restraining factors of frame, maximum horizontal capacities were increased by 1.91~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-l~3), cumulated energy dissipation capacities wear increased by 1.35~l.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Evaluation and Improvement for Seismic Resistant Capacity of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능 평가 및 개선)

  • 신종학;하기주;최민권;전하석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.411-414
    • /
    • 1999
  • Five reinforced concrete rigid frame and masonry infilled wall and cut off type masonry infilled wall were constructed and tesed during vertical and cycle loads simultaneously. Experimental programs were accomplished to evaluate the structural performance of test spcimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Test variables are hoop reinforcement ratio and masonry infilled wall with on without. All the specimens were modelling in one-third scale size.

  • PDF

Improvement and Evaluation for Seismic Resistant Capacity of Reinforced Concrete Shear wall with Connection Types and Diagonal Reinforcement (철근콘크리트 전단벽의 접합방식과 대각보강에 따른 내진성능 평가 및 개선)

  • Shin, Jong-Hack;Ha, Gee-Joo;An, Joon-Suk;Ju, Jung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.139-147
    • /
    • 1999
  • Six reinforced concrete shear wall, constructured with fully rigid, slit, and infilled types, were tested under both vertical and cyclic loadings. Experimental programs were carried out to evaluate the seismic performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility, under load reversals. All the specimens were modeled in one-third scale size. Based on the test results, the following conclusions can be made. For the diagonal reinforced slit and infilled shear wall specimens, it was found that the failure mode shows very effective crack control and crushing due to slippage prevention of boundary region and reduction of diagonal tension rathar than the brittle shear and diagonal tension failure. The ductility of specimens designed by the diagonal reinforcement for the slit and infilled shear wall was increased 1.72~1.81 times in comparison with the fully rigid shear wall frame. Maximum horizontal load-carrying capacity of specimens designed by the diagonal reinforcement ratio the slit and infilled shear wall was increased respectively by l.14 times and l.49 times in comparison with the standard fully rigid shear wall frame.

  • PDF

Development of Technique for Improvement of Earthquake-Resistant Performance of Reinforced Concrete Infilled Masonry Frame (철근콘크리트 프레임면내 조적벽체의 내진성능개선 기술 개발)

  • 신종학;하기주;최민권;권중배;남왕교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1143-1148
    • /
    • 2001
  • Experimental programs were accomplished to improve and evaluate the structural performance of test specimens, such as hysteretic behavior, maximum horizontal strength, crack propagation, and ductility etc. Test variables are restraining factors of frame, with or without masonry infilled wall, and masonry method. Six reinforced concrete rigid frame and masonry infiiled wall were constructed and tested in one-third scale size under vertical and cyclic loads simultaneously. Based on the test results, the following conclusions can be made. For masonry infilled walls with restraining factors of frame, maximum horizontal capacities were increased by 1.26~2.24 times in comparision with that of rigid frame. For masonry infilled wall with restraining factors of frame(IFWB-1), cumulated energy dissipation capacities wear increased by 1.60 times in comparision with that of masonry infilled wall(IFB-1) at final stage of testing.

  • PDF

Seismic Behavior of Non Ductile Reinforced Concrete Frame Retrofitted With Cast-In Place Infilled Shear Wall (현장타설 끼움 벽으로 보강된 비내진 상세를 갖는 철근콘크리트 골조의 내진거동)

  • Lee, Hye-Yeon;Kim, Sun-Woo;Han, Byung-Chan;Yun, Hyun-Do;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.453-456
    • /
    • 2004
  • RC frames built prior to the advent of the philosophy of ductile concrete is one type of existing construction susceptible to damage. Strengthening and stiffening of such frames has been accomplished by infilled frames with cast-in-place, reinforced concrete walls. Placement of CIP shear walls within strategic bays of a structure appears to be a logical and economical method to strengthen a reinforced concrete frame and to stiffen a building in order to reduce architectural and mechanical damage. This study investigates the seismic performance of cast-in place infilled shear wall within existing frames. The object of this study is to clarify the seismic capacity and characteristics in the hysteretic behavior of bare frame, CIP infilled shear wall and CIP infilled wall reinforced diagonal bars.

  • PDF

Structural Performance Evaluation of Reinforced Concrete Shear Walls with Various Connection Type Under Load Reversals. (반복하중을 받는 철근콘크리트 전단벽체의 접합방식에 따른 구조성능 평가)

  • 신종학;하기주;권중배;전찬목
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.513-518
    • /
    • 1997
  • In this study, nine reinforced concrete infilled frames involved bare frames were tested during vertical and cyclic loads simultaneously. This test programs were carried to investigate the horizontal strength and the crack propagation in variance with hoop reinforcement ratio. All specimens were modeling in one-third scale size. In this experimental program structural performance of reinforced concrete shear wall were focus at connection types. Based on the test results, the following conclusions are made. In the boundary column member of reinforced concrete shear wall, increasing the ratio of hoop bar in two or three times, in the fully babel type, the shear and horizontal strength of specimens were increased 1.1-1.2 times than that of fully rigid frame. And infilled shear wall specimen were increased 1.17-1.27 times than that. Fully rigid babel type shear wall specimens were increased 5.7~8.0 times, and infilled shear wall specimens were increased about 4.0~5.6 times than that of infilled shear wall specimens.

  • PDF

An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall (블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구)

  • Choi, Chang-Sik;Lee, Hye-Yeon;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.199-206
    • /
    • 2005
  • In many other countries framed structures with inadequate lateral strength and stiffness have been strengthened by providing reinforced concrete infilled wall. There is a general agreement among researchers those infilled walls have 3-5times greater lateral strength compared with bare frame. The main objective of this research is to investigate the behavior and strength of reinforced concrete frames infilled with concrete block and cast-in-place reinforced concrete panels used for strengthening the structure against seismic action. For this purpose three 1/3 scale, one-bay, one-story reinforced concrete infilled frames were tested under reversed cyclic loading simulating the seismic effect. The results indicate that infilled walls increase both strength and stiffness significantly under lateral loads. Especially Strength capacity and initial stiffness of CIP infilled wall increased 3.8 times and 6.6 times higher than lightly reinforced concrete frame.

A Nonlinear Finite Element Analysis to Reinforced Concrete Frame Retrofitted with Cast-In Plate Infilled Shear Wall (현장끼움벽으로 보강된 철근콘크리트 골조의 비선형 유한요소해석)

  • Han Min Ki;Lee Hye Yeon;Kim Hyo Jin;Lee Kab Weon;Choi Chang Sik;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.73-76
    • /
    • 2005
  • This paper discussed finite element method(FEM) models of the reinforced concrete frame retrofitted with cast-in plate infilled shear wall and analysed under constant axial and monotonic lateral load using ABAQUS. Detailed finite element models are created by studying the monotonic load response of the designed connection of reinforced concrete frame and cast-in plate infilled shear wall. The developed models account for the effect of material inelasticity, concrete cracking, geometric nonlinearity and bond-slip of steel, frame and infilled shear wall. In order to verify the proposed FEM, this study behaved analysis considered a diagonal reinforced steel. The analytical results compared with the experimental results.

  • PDF