• Title/Summary/Keyword: Inertia effect

Search Result 453, Processing Time 0.026 seconds

Control of Ventilation during Sleep (수면 중 호흡의 조절)

  • Kim, Woo-Sung
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • Sleep alters both breathing pattern and the ventilatory responses to external stimuli. These changes during sleep permit the development or aggravation of sleep-related hypoxemia in patients with respiratory disease and contribute to the pathogenesis of apneas in patients with the sleep apnea syndrome. Fundamental effects of sleep on the ventilatory control system are 1) removal of wakefulness input to the upper airway leading to the increase in upper airway resistance, 2) loss of wakefulness drive to the respiratory pump, 3) compromise of protective respiratory reflexes, and 4) additional sleep-induced compromise of ventilatory control initiated by reduced functional residual capacity on supine position assumed in sleep, decreased $CO_2$ production during sleep, and increased cerebral blood flow in especially rapid eye movement(REM) sleep. These effects resulted in periodic breathing during unsteady non-rapid eye movement(NREM) sleep even in normal subjects, regular but low ventilation during steady NREM sleep, and irregular breathing during REM sleep. Sleep-induced breathing instabilities are divided due primarily to transient increase in upper airway resistance and those that involve overshoots and undershoots in neural feedback mechanisms regulating the timing and/or amplitude of respiratory output. Following ventilatory overshoots, breathing stability will be maintained if excitatory short-term potentiation is the prevailing influence. On the other hand, apnea and hypopnea will occur if inhibitory mechanisms dominate following the ventilatory overshoot. These inhibitory mechanisms include 1) hypocapnia, 2) inhibitory effect from lung stretch, 3) baroreceptor stimulation, 4) upper airway mechanoreceptor reflexes, 5) central depression by hypoxia, and 6) central system inertia. While the respiratory control system functions well during wakefulness, the control of breathing is commonly disrupted during sleep. These changes in respiratory control resulting in breathing instability during sleep are related with the pathophysiologic mechanisms of obstructive and/or central apnea, and have the therapeutic implications for nocturnal hypoventilation in patients with chronic obstructive pulmonary disease or alveolar hypoventilation syndrome.

  • PDF

Implementation of Carpal Tunnel Syndrome Prevention System Using Arduino (Arduino를 활용한 손목 터널 증후군 예방 시스템 구현)

  • Hwang, Woo-Jin;Woo, Youn-Ho;Noh, Yun-Hong;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.531-532
    • /
    • 2016
  • Carpal tunnel syndrome, carpal tunnel becomes part of a narrower median nerve pain occurs pressed. How a stable wrist stretch for the prevention of carpal tunnel syndrome is required, it should life guides to fit the user is provided. In this research, users themselves recognize the risk of carpal tunnel syndrome, to be able to stretch, it implements the application. Application, based on the usage time set by the user, executes the alarm and lock. At this time, the user may utilize arduino and inertia sensor, it is possible to wrist stretch, to analyze usage patterns, it is possible to provide a medical information and life guides to suit the user. Data using Bluetooth 4.0 communication has been to meet the runaway. In order to evaluate the mounted system, targeting four subjects, the time and the touch frequency of usage of the 3-day smartphone measured, as a result of the questionnaire, it reduces the frequency of use of smartphones, a positive it was possible to prove the effect.

  • PDF

Vibration Analysis of Symmetrically Laminated Composite Rectangular Plates (대칭 복합적층 직사각형 판의 진동해석)

  • T.Y. Chung;J.H. Chung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.140-148
    • /
    • 1992
  • The free vibration problem of symmetrically laminated composite rectangular plates is formulated based on anisotropic thick plate theory including the effects of shear deformation and rotary inertia. Considering the difficulty of obtaining closed-form solutions, Rayleigh-Ritz analysis using polynomials having the property of Timoshenko beam functions as trial functions is adopted. The boundary conditions elastically restrained against rotation are accomodated as well as classical boundary conditions. From the results of numerical studies, the validity of the present method is verified. And it is also found that the adoption of thick plate theory for the vibration analysis of laminated composite plates is essential because of the relatively large shear deformation effect, and that the convergence of the Rayleigh quotient to the stationary value is less rapid in anisotropic composite plates than that in the orthotropic ones due to more complicated mode shapes of the former.

  • PDF

Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method

  • Yesilce, Yusuf;Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • v.31 no.4
    • /
    • pp.453-475
    • /
    • 2009
  • The literature regarding the free vibration analysis of Bernoulli-Euler and Timoshenko beams on elastic soil is plenty, but the free vibration analysis of Reddy-Bickford beams on elastic soil with/without axial force effect using the Differential Transform Method (DTM) has not been investigated by any of the studies in open literature so far. In this study, the free vibration analysis of axially loaded Reddy-Bickford beam on elastic soil is carried out by using DTM. The model has six degrees of freedom at the two ends, one transverse displacement and two rotations, and the end forces are a shear force and two end moments in this study. The governing differential equations of motion of the rectangular beam in free vibration are derived using Hamilton's principle and considering rotatory inertia. Parameters for the relative stiffness, stiffness ratio and nondimensionalized multiplication factor for the axial compressive force are incorporated into the equations of motion in order to investigate their effects on the natural frequencies. At first, the terms are found directly from the analytical solutions of the differential equations that describe the deformations of the cross-section according to the high-order theory. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the governing differential equations of the motion. The calculated natural frequencies of one end fixed and the other end simply supported Reddy-Bickford beam on elastic soil using DTM are tabulated in several tables and figures and are compared with the results of the analytical solution where a very good agreement is observed and the mode shapes are presented in graphs.

Design of Tension Control System in a Textile Process based on Microprocessor (마이크로프로세서를 기반으로 한 섬유공정에서의 장력제어 시스템 설계)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1381-1387
    • /
    • 2007
  • Up to now, various continuous-processing systems are used in many industrial applications such as textile machines, paper-making machines, printing machines, and so on. In these applications, the tension forced on the products in the control volume can be changed according to the velocity difference between the feeding roll and the delivery roll. Specially, the tension variation generated by the velocity difference, or the inertial effect can decreases the quality of the products in the textile process. In this paper, the tension control problem in a circular knitting machine system is treated to cope with these problems. Firstly, the tension relationship in the winding mechanism of general continuous-processing systems is modeled. Next, to effectively drive the feeding and delivery rolls in the circular knitting machine system, a new tension control method is presented by considering the inertia compensation and the velocity difference between the feeding roll and the delivery roll. Through the experimental works, it is shown that the proposed tension control method can be used to improve the performance of tension control in the control volume of the given circular knitting machine system.

  • PDF

A Quantification Method of Learner's Characteristic based on the Connectionism (연결주의에 기반한 학습자 특성의 정량화 기법)

  • Kim, Yong-Beom;Kim, Yung-Sik
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.351-360
    • /
    • 2008
  • It seems reasonable to assume that the individualized learning means more than simple teaching-learning method, so the instructional method has attracted a fair amount of attention not only in classroom, but also in the field of a adult education, cooperate education, and so on. In order to have an effect on individualized learning, we need to analyze and measure the learner's characteristic. However it is difficult to represent in quantified form because the conception and category of learner's characteristic is various and extensive. Therefore, in this paper, we propose a quantification method of learner's characteristic, which is limited to learner's cognitive structure and style, and is represented in the light of connectionism, verify the validity. The learner's cognitive structure in this paper was represented, which simplified the learner's cognitive structure. Additionally, the cognitive style in this paper was limited to inertia of knowledge for learner's cognition.

Investigation of Transient Performance of An Auxiliary Power Unit Microturbine Engine (보조동력용 마이크로터빈 엔진에 대한 과도성능 해석)

  • Son, Ho-Jae;Kim, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.20-28
    • /
    • 2007
  • The easiest way to see the phenomena of compressor surge is to show the static and dynamic operation characteristic on the map. Its operation zone will be restricted by the surge limit and, static and transient process must have some margin for it. Effect of rotor moment of inertia, air/gas volumes and heat transfer are factors to cause the transition from the static line. In case a large volume such as heat exchanger exists in the system it will exert a substantial influence to dynamic characteristics. In the present paper, influence of air volume bled from the compressor exit on transient process is investigated with an example of an auxiliary power unit micro-turbine engine. Turbine mass, pressure ratio, rotation speed, power and moment are calculated based on mass and work conservation. Result from the present study can give guidance to design the control system. A computer program is developed to calculate the dynamic process using the MathCAD commercial software.

Model Reference Adaptive Control of a Quadrotor Considering the Uncertainty of Payload (유상하중의 불확실성을 고려한 쿼드로터의 모델 참조 적응제어 기법 설계)

  • Lee, Dongwoo;Kim, Lamsu;Jang, Kwangwoo;Lee, Seongheon;Bang, Hyochoong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.749-757
    • /
    • 2021
  • In transportation missions using quadrotor, the payload may change the model parameters, such as mass, moment of inertia, and center of gravity. Moreover, if position of the payload is constantly changing during flight, the effect can adversely affect the control performances. To handle this issue, we suggest Model Reference Adaptive Control based on Linear Quadratic Regulator(LQR+MRAC) to compensate the uncertainty caused by payload. Firstly, the mathematical modeling with the fixed payload is derived. Second, Linear Quadratic Regulator (LQR) is used to design the reference model and baseline controller. Also, through the Stability method, Adaptive law is derived to estimate the model parameters. To verify the performance of proposed control scheme, we compared LQR and LQR+MRAC in situations where uncertainties exist. And, when the disturbance exist, the classic MRAC and proposed controller is compared to analyze the transient response and robustness.

Chain Length Effect on the Configurational Properties of an n-Alkane Chain in Solution

  • Jeon, Seung-Ho;Ree, Tai-Kyue;Oh, In-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.367-371
    • /
    • 1986
  • Dynamic and equilibrium properties of n-alkane chains immersed in solvent molecules have been investigated by a molecular dynamics method. The n-alkane chain is assumed to be a chain of elements (CH$_2$) interconnected by bonds having a fixed bond length and bond angle, but each bond of the chain is allowed to execute hindered internal rotation. We studied the effect of the number of the chain elements (N$_c$ = 10, 15 and 20) on the equilibrium properties of the system, e.g., the pair correlation functions between a chain element and solvent molecules, g$_{cs}$(r), and between the chain elements, g$_{cc}$(r), and the configurational properties such as the mean-square end-to-end distance < R$^2$ >, the mean-square radius of gyration < S$^2$ >, and the eigenvalues of the moment-of-inertia tensor < S$_i^2$ > / < S$^2$ > (i = 1, 2 and 3). We also studied the dynamic properties of the system, e.g., the autocorrelation function C(A;t) where A = R$^2$(t), = S$^2$(t), or = ${\vec{V}}(t)({\vec{V}}$ = velocity of the center of mass), and the diffusion coefficient D. The g$_{cs}$(r)'s are almost equal irrespective of the change of Nc while g$_{cc}$(r) becomes larger as N$_c$ increases; The MD computed configurational properties < R$^2$2 > and < S$^2$ > were found to be a little different from the values calculated from the statistical equations of < R$^2$ > and < S$^2$ >, it may be due to the fact that our model for the MD simulations includes a long-range volume effect. From the < S$_i^2$ > / < S$^2$ >, it is found that the chain molecule has a nearly spherical shape irrespective of the variation of N$_c$. For the dynamic properties we found that the C(R$^2$;t) and C(S$^2$;t) of lower N$_c$ decay faster than those of higher N$_c$, while the C($\vec V$;t) of the center of mass in the chain is weakly dependent on the N$_c$. The center of mass diffusion coefficient D$_c$ decreases as N$_c$ increases while the end point diffusion coefficient D$_e$ is nearly equal irrespective of the change of N$_c$.

Effects of Motivation-Hygiene Factors on Acceptance and Resistance of Mobile Facial Recognition Payment Services: Focusing on Chinese Users (모바일 안면인식결제서비스의 동기-위생 요인이 수용 및 저항에 미치는 영향: 중국 사용자를 중심으로)

  • Jin, Xuanli;Park, JooSeok;Jin, JeongSuk
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.143-168
    • /
    • 2022
  • Using Herzberg's motive hygiene theory, this study also investigated the influence of motivation factors and hygiene factors on acceptance and resistance of mobile facial recognition payment services, and the influence of consumer innovation as a parameter on acceptance and resistance from motivation factors and hygiene factors. A survey was conducted on Chinese users who had experience using mobile payment services. IBM SPSS Statistics 26 and SmartPLS 3.0 were used for statistical analysis. As a result of the analysis, the motivating factors of mobile facial recognition payment services have a positive (+) impact on acceptance, and there were no significant results on resistance. In addition, hygiene factors have been shown to have negative (-) effects on acceptance and positive (+) effects on resistance. Consumer innovation, which is a parameter in relation to motivation factors and acceptance and resistance, had a partial mediation effect, and a partial mediation effect was also seen in the relationship between hygiene factors and resistance, but no mediation effect was found in the relationship between hygiene factors and acceptance. The motivating factors found through research results such as rapidity, ubiquity, perceived usability, perceived ease of use, privacy concerns, security, status quo inertia, use barriers, and loss avoidance, which are factors of non-contact and hygiene, can be used as basic data for activating mobile facial recognition payment services.