• 제목/요약/키워드: Industry furnace

검색결과 222건 처리시간 0.028초

Relationship between Compressive Strength of Geo-polymers and Pre-curing Conditions

  • Kim, Hyunjung;Kim, Yooteak
    • Applied Microscopy
    • /
    • 제43권4호
    • /
    • pp.155-163
    • /
    • 2013
  • Meta-kaolin (MK) and blast furnace slag (BS) were used as raw materials with NaOH and sodium silicate as alkali activators for making geo-polymers. The compressive strength with respect to the various pre-curing conditions was investigated. In order to improve the recycling rate of BS while still obtaining high compressive strength of the geo-polymers, it was necessary to provide additional CaO to the MK by adding BS. The specimens containing greater amounts of BS can be applied to fields that require high initial compressive strength. Alkali activator(s) are inevitably required to make geo-polymers useful. High temperature pre-curing plays an important role in improving compressive strength in geo-polymers at the early stage of curing. On the other hand, long-term curing produced little to no positive effects and may have even worsened the compressive strength of the geo-polymers because of micro-structural defects through volume expansion by high temperature pre-curing. Therefore, a pre-curing process at a medium range temperature of $50^{\circ}C$ is recommended because a continuous increase in compressive strength during the entire curing period as well as good compressive strength at the early stages can be obtained.

플라즈마 도핑을 이용한 결정질 태양전지 에미터층 형성 연구 (A Study on Emitter layer by Plasma Doping for Crystalline Silicon Solar Cells)

  • 유동열;노시철;최정호;김정환;서화일;김영철
    • 반도체디스플레이기술학회지
    • /
    • 제10권4호
    • /
    • pp.61-64
    • /
    • 2011
  • In order to grow the crystalline solar cells industry continuously, development of alternate low-cost manufacturing processes is required. Plasma doping system is the technique for introducing dopants into semiconductor wafers in CMOS devices. In photovoltaics, plasma doping system could be an interesting alternative to thermal furnace diffusion processes. In this paper, plasma doping system was applied for phosphorus doping in crystalline solar cells. The Plasma doping was carried out in 1~4 KV bias voltages for four minutes. For removing surface damage and formation of pn junction, annealing steps were carried out in the range of $800{\sim}900^{\circ}C$ with $O_2$ ambient using thermal furnace. The junction depth in about $0.35{\sim}0.6{\mu}m$ range have been achieved and the doping profiles were very similar to emitter by thermal diffusion. So, It could be confirmed that plasma doping technique can be used for emitter formation in crystalline solar cells.

대용량 청정 공기 가열 장치 설계 (Design of Large Capacity Clean Air Heater)

  • 김정우;정광수;전민준;이규준
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.115-118
    • /
    • 2010
  • 공기 가열 장치는 크게 연소식과 열교환식 2가지가 있으며, 본 논문은 공기를 오염시키지 않은 열교환 방식인 청정 공기 가열 장치의 설계 방법을 기술하였다. 가열 장치는 크게 연소기 (Burner), 가열로 (Furnace), 열교환기 (Heat Exchanger), 배기구로 구성되어 되며, 가열되는 공기 유량과 입/출구 온도값으로부터 가열원인 연소기의 열용량과 연소기 연료인 LNG의 소요량을 구한다. 열교환기 내부에서 연소기의 뜨거운 연소가스와 가열되는 차가운 공기간의 열매체를 통한 간접 열교환이 이루어지므로, 가열되는 공기의 입/출구 온도에서 열교환기의 용량, 크기, 작동 최대 온도를 얻을 수 있게 된다.

  • PDF

Strength evaluation of concrete with fly ash and GGBFS as cement replacing materials

  • Chore, H.S.;Joshi, M.P.
    • Advances in concrete construction
    • /
    • 제3권3호
    • /
    • pp.223-236
    • /
    • 2015
  • Concrete is the most widely used material of construction. Concrete gained the popularity as a construction material due to the easy availability of its component materials, the easy formability, strength and rigidity upon setting and curing.In construction industry, strength is the primary criterion in selecting a concrete for a particular application. Now a days, the substantial amount of waste materials, containing the properties of the Pozzolana, is being generated from the major industries; and disposal of such industrial wastes generated in abundance is also a serious problem from the environmental and pollution point of view. On this backdrop, efforts are made by the researchers for exploring the possible utilization of such waste materials in making the sustainable construction material. The present paper reports the experimental investigations to study the strength characterization of concrete made from the pozzolanic waste materials. For this purpose, the Pozzolanic materials such as fly ash and ground granulated blast furnace slag were used as a cement replacing materials in conjunction with ordinary Portland cement. Equal amount of these materials were used in eight trial mixes with varying amount of cement. The water cement ratio was also varied. The chemical admixture was also added to improve the workability of concrete. The compressive strengths for 7, 28, 40 and 90 days' were evaluated whereas the flexural and tensile strengths corresponding to 7, 28 and 40 days were evaluated. The study corroborates that the pozzolanic materials used in the present investigation along with the cement can render the sustainable concrete.

CBS-Dust 치환율에 따른 고로슬래그 미분말을 함유한 시멘트 페이스트의 레올로지특성 (Rheology Characteristics of Cement Paste with Blast Furnace Slag Depending on CBS-Dust Contents)

  • 박병주;신세준;이동주;김종;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.144-145
    • /
    • 2020
  • Recently, the cement industry has been using various wastes as raw materials and fuel for cement as an eco-friendly business. However, most of these waste resources contain large amounts of chloride and alkali, which are concentrated in manufacturing facilities and adversely affect cement production products. Accordingly, in the cement production process, the chlorine ion contained in cement is managed by introducing the Chlorine Bypass System (CBS) into the manufacturing facility and releasing the dust. However, the processing volume of CBS-Dust has been limited due to the shortage of domestic processing companies, and the cost has also been raised, requiring measures to be taken in dealing with CBS-Dust. In this study, rheological properties of CBS-Dust incorporated paste are tested. With the increase of CBS-Dust, flow was decreased due to enhanced viscosity.

  • PDF

혼화재를 사용한 산업용 바닥 콘크리트의 물성 검토 (Properties of Concrete for Industrial Floor using Mineral Admixtures)

  • 김용로;공민호;박종호
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.17-24
    • /
    • 2016
  • 최근 물류창고 등의 산업용 바닥은 기계식 미장에 의해 마감을 하는 노출콘크리트가 일반적인 추세이며, 표면 내마모성 등의 확보를 목적으로 시멘트만을 사용하는 배합이 주로 활용되고 있다. 그러나 하절기 공사시 시멘트만을 사용할 경우 응결이 촉진되어 미장작업에 문제를 초래하는 사례가 발생되고 있다. 이에 본 연구에서는 바닥용 콘크리트에 혼화재료로 플라이애시 및 고로슬래그 미분말을 적용할 경우 콘크리트 물성 및 내마모성에 미치는 영향을 검토하였다. 검토 결과 산업용 바닥 콘크리트에서 콘크리트의 물성에 크게 영향을 미치지 않으면서 플라이애시 및 고로슬래그 미분말을 일부 혼입하여 사용할 수 있다는 것을 확인할 수 있었다.

CO2 절감을 위한 콘크리트 2차제품 양생단계저감용 결합재 종류에 따른 모르타르 강도특성 (Strength Properties of Mortar According to Types of Binders for Reducing Curing Process of Concrete Secondary Products for Reduction CO2)

  • 김하석;백대현;이세현
    • 자원리싸이클링
    • /
    • 제23권4호
    • /
    • pp.37-46
    • /
    • 2014
  • 건설 분야 중 건설 재료와 건자재 산업에서 발생하는 $CO_2$는 약 6,700만톤으로 건설 분야에서 발생하는 $CO_2$의 약 30 %를 점유하고 있다. 건설 분야에서 $CO_2$ 저감은 건자재 산업에서 $CO_2$를 발생시키는 2차, 3차 양생을 줄여 소비되는 화석연료 사용과 배출가스 저감의 조절이 필수적이다. 따라서 본 연구는 시멘트 결합재를 기초로 하여 결합재를 40 % 까지 대체하여 모르타르를 제조한 후 양생방법을 달리하여 응결 및 강도 특성을 분석하였다. 결합재 치환율에 따른 강도 특성 결과 증기양생 후 고로슬래그와 CSA 15%, CAMC 5%를 치환한 시험체의 강도 증진이 활발하였다. 특히 고로슬래그 50%, CSA 15%, CAMC 5%를 치환한 시험체가 가장 높게 강도가 증진되었다. 하지만 CAMC 10%의 경우 열팽창에 의한 균열과 온도차에 의한 건조수축, 과도하게 생성된 에트린가이트에 의해 강도가 저하되는 결과를 가져왔다.

국내 수소 생산, 소비 및 유통 현황 (The Status of Domestic Hydrogen Production, Consumption, and Distribution)

  • 김봉진;김종욱;최상진
    • 한국수소및신에너지학회논문집
    • /
    • 제16권4호
    • /
    • pp.391-399
    • /
    • 2005
  • This paper deals with the survey of domestic hydrogen production, consumption, and distribution. The amount of domestic hydrogen production and consumption has not been identified, and we survey the amount of domestic hydrogen production and consumption by industries. The hydrogen production industries are classified into the oil industry, the petrochemical industry, the chemical industry, and the other industry. In 2004, the amount of domestic hydrogen production was 972,601 ton, which corresponded to 1.9% of the global hydrogen production. The oil industry produced 635,683 ton(65.4%), the petrochemical industry produced 241,970 ton(24.9%), the chemical industry produced 66,250 ton(6.8%), the other industry produced 28,698 ton(2.9%). The hydrogen consumptions of corresponding industries were close to the hydrogen productions of industries except that of the other industry. Most hydrogen was used as non-energy for raw materials and hydrogen additions to the process. Only 122,743 ton(12.6%) of domestic hydrogen was used as energy for heating boilers. In 2004, 47,948 ton of domestic hydrogen was distributed. The market shares of pipeline, tube trailers and cylinders were 84.4% and 15.6%, respectively. The purity of 31,848 ton(66.4%) of the distributed hydrogen was 99.99%, and 16,100 ton(33.6%) was greater than or equal to 99.999%. Besides domestic hydrogen, we also identify the byproduct gases which contain hydrogen. The iron industry produces COG( coke oven gas), BFG(blast furnace gas), and LDG(Lintz Donawitz converter gas) that contain hydrogen. In 2004, byproduct gases of the iron industry contained 355,000 ton of hydrogen.

고온환경하에서 탄소강의 피로균열진전 특성 (A Study on the Fatigue Crack Grouth Charactionistic of carbon Steel in High Temperature Environment)

  • 이종형;최성대;양성현;김영문
    • 한국산업융합학회 논문집
    • /
    • 제7권4호
    • /
    • pp.399-405
    • /
    • 2004
  • Currently, the use of carbon steel in a high temperature environment, such atomic reactor, increases. Test piece was heated in electric furnace and the prescribed temperature was controlled within ${\pm}1^{\circ}C$. Debris that falls apart from cracked section due to friction is accumulated inside. Then, as it causes fretting corrosion (formation of oxide layer), it contributes to crack closure.

  • PDF

석영 유리의 파괴 거동에 관한 연구(I) (A Study on the Fracture Behavior of Quartz Glass(I))

  • 최성대;정선환;정영관;김기만;홍영배
    • 한국산업융합학회 논문집
    • /
    • 제10권3호
    • /
    • pp.179-185
    • /
    • 2007
  • Quartz glass are used in semiconductor industries as the reaction furnace, wafer carrier and accessaries. During the process the quartz glass received compression by direct contact with other quartz glass ware and metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process. Even as the other ceramic materials quartz glass have high compressive strength but often there happened crack and breakage of quartz glass resulted in a great damage in the process. In this paper investigation will be carried out on fracture behavior of quartz glass under local load to give guideline to prevent unintended fracture of quartz glass.

  • PDF