• 제목/요약/키워드: Industrial robots

검색결과 503건 처리시간 0.021초

On Motion Planning for Human-Following of Mobile Robot in a Predictable Intelligent Space

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권1호
    • /
    • pp.101-110
    • /
    • 2004
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, humans and robots need to be in close proximity to each other as much as possible. Moreover, it is necessary for their interactions to occur naturally. It is desirable for a robot to carry out human following, as one of the human-affinitive movements. The human-following robot requires several techniques: the recognition of the moving objects, the feature extraction and visual tracking, and the trajectory generation for following a human stably. In this research, a predictable intelligent space is used in order to achieve these goals. An intelligent space is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to follow a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to follow the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and following of the walking human with the mobile robot are presented.

3-D vision sensor for arc welding industrial robot system with coordinated motion

  • Shigehiru, Yoshimitsu;Kasagami, Fumio;Ishimatsu, Takakazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.382-387
    • /
    • 1992
  • In order to obtain desired arc welding performance, we already developed an arc welding robot system that enabled coordinated motions of dual arm robots. In this system one robot arm holds a welding target as a positioning device, and the other robot moves the welding torch. Concerning to such a dual arm robot system, the positioning accuracy of robots is one important problem, since nowadays conventional industrial robots unfortunately don't have enough absolute accuracy in position. In order to cope with this problem, our robot system employed teaching playback method, where absolute error are compensated by the operator's visual feedback. Due to this system, an ideal arc welding considering the posture of the welding target and the directions of the gravity has become possible. Another problem still remains, while we developed an original teaching method of the dual arm robots with coordinated motions. The problem is that manual teaching tasks are still tedious since they need fine movements with intensive attentions. Therefore, we developed a 3-dimensional vision guided robot control method for our welding robot system with coordinated motions. In this paper we show our 3-dimensional vision sensor to guide our arc welding robot system with coordinated motions. A sensing device is compactly designed and is mounted on the tip of the arc welding robot. The sensor detects the 3-dimensional shape of groove on the target work which needs to be weld. And the welding robot is controlled to trace the grooves with accuracy. The principle of the 3-dimensional measurement is depend on the slit-ray projection method. In order to realize a slit-ray projection method, two laser slit-ray projectors and one CCD TV camera are compactly mounted. Tactful image processing enabled 3-dimensional data processing without suffering from disturbance lights. The 3-dimensional information of the target groove is combined with the rough teaching data they are given by the operator in advance. Therefore, the teaching tasks are simplified

  • PDF

Development of a Simulator for Off-Line Programming of Gantry-Robot Welding System

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Kwon Son;Park, Jae-Won;Jung, Chang-Wook;Kim, Hyung-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.517-517
    • /
    • 2000
  • Welding automation is one of the most important manufacturing issues in shipbuilding in order to lower the cost, increase the quality, and avoid the labor problems. Generally the on-line teaching is utilized on the robot that is used in the welding automation system, but it requires much effort and long time to program. Especially, if the system is composed of more than two cooperating robots, it demands much more skill to program the robots' motion. Thus, a convenient programming tool is required for efficient utilization of welding automation system. In this study, a convenient programming tool is developed for welding automation in which gantry-robot system is used. The system is composed of a gantry transporter and two robots mounted on the gantry to cover the wide work range in the ship building application. As a programming tool, an off-line programming software based on PC is developed. By using this software, field operator does not need to concern about coding of task programs for three control units, one is for gantry and two are for robots. The task programs are automatically generated by assembling the program modules in database according to geometrical information of workpiece and welding condition, which become the only concern of field operator, The feasibility of the generated programs can be verified via a motion simulator previously to on-line running.

  • PDF

A Study on the Improvement of the Intelligent Robots Act

  • Park, Jong-Ryeol;Noe, Sang-Ouk
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.217-224
    • /
    • 2019
  • The intelligent robot industry is a complex which encompasses all fields of science and technology, and its marketability and industrial impact are remarkable. Major countries in the world have been strengthening their policies to foster the intelligent robot industry, but discussions on liability issues and legal actions that are accompanied by the related big or small accidents are still insufficient. In this study, therefore, the patent law by artificial intelligence robots and the legislation for relevant legal actions at the criminal law level are presented. Patent law legislation by artificial intelligence robots should comply with the followings. First, the electronic human being other than humans ought to be given legal personality, which is the subject of patent infringement. Even if artificial intelligence has legal personality, legal responsibility will be varied depending on the judgment of whether the accident has occurred due to the malfunction of the artificial intelligence itself or due to the human intervention with malicious intention. Second, artificial intelligence as a subject of actors and responsibility should be distinguished strictly; in other words, the injunction is the responsibility of the intelligent robot itself, but the financial repayment is the responsibility of the owner. In the criminal law legislation, regulations for legal punishment of intelligent robot manufacturing companies and manufacturers should be prepared promptly in case of legal violation, by amending the scope of application of Article 47 (Penal Provisions) of the Intelligent Robots Development and Distribution Promotion Act. In this way, joint penal provisions, which can clearly distinguish the responsibilities of the related parties, should be established to contribute to the development of the fourth industrial revolution.

산업용 로봇의 기어소음 특성 고찰 (Investigation of Gear Noise for Industrial Robots)

  • Kim, Dong-Hae;Lee, Jong-Moon
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.321.2-321
    • /
    • 2002
  • An industrial robot noise has various noise sources such as gears, motors, bearings, and controller fans. Among these, gears are the most dominant source for noise. The gear noise, caused by tooth profile, elastic deformation, machining error and wear, is directly correlated with the transmission error of mating gear. Due to the fact that has several axis and many gears, it is difficult to understand the characteristics of the vibration and noise of robots. (omitted)

  • PDF

TMS320VC5510 DSK를 이용한 음성인식 로봇 (The Robot Speech Recognition using TMS320VC5510 DSK)

  • 최지현;정익주
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.211-218
    • /
    • 2007
  • As demands for interaction of humans and robots are increasing, robots are expected to be equipped with intelligibility which humans have. Especially, for natural communication, hearing capabilities are so essential that speech recognition technology for robot is getting more important. In this paper, we implement a speech recognizer suitable for robot applications. One of the major problem in robot speech recognition is poor speech quality captured when a speaker talks distant from the microphone a robot is mounted with. To cope with this problem, we used wireless transmission of commands recognized by the speech recognizer implemented using TMS320VC5510 DSK. In addition, as for implementation, since TMS320VC5510 DSP is a fixed-point device, we represent efficient realization of HMM algorithm using fixed-point arithmetic.

  • PDF

Human Centered Robot for Mutual Interaction in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.246-252
    • /
    • 2005
  • Intelligent Space is a space where many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents, which provide human with services. To realize this, human and mobile robots have to approach each other as much as possible. Moreover, it is necessary for them to perform interactions naturally. It is desirable for a mobile robot to carry out human affinitive movement. In this research, a mobile robot is controlled by the Intelligent Space through its resources. The mobile robot is controlled to follow walking human as stably and precisely as possible. In order to follow a human, control law is derived from the assumption that a human and a mobile robot are connected with a virtual spring model. Input velocity to a mobile robot is generated on the basis of the elastic force from the virtual spring in this model. And its performance is verified by the computer simulation and the experiment.

궤적 생성 반복 학습을 통한 소프트 액추에이터 제어 연구 (Iterative Learning Control of Trajectory Generation for the Soft Actuator)

  • 송은정;구자춘
    • 로봇학회논문지
    • /
    • 제16권1호
    • /
    • pp.35-40
    • /
    • 2021
  • As the robot industry develops, industrial automation uses industrial robots in many parts of the manufacturing industry. However, rigidity-based conventional robots have a disadvantage in that they are challenging to use in environments where they grab fragile objects or interact with people because of their high rigidity. Therefore, researches on soft robot have been actively conducted. The soft robot can hold or manipulate fragile objects by using its compliance and has high safety even in an atypical environment with human interaction. However, these advantages are difficult to use in dynamic situations and control by the material's nonlinear behavior. However, for the soft robot to be used in the industry, control is essential. Therefore, in this paper, real-time PD control is applied, and the behavior of the soft actuator is analyzed by providing various waveforms as inputs. Also, Iterative learning control (ILC) is applied to reduce errors and select an ILC type suitable for soft actuators.

Deep Level Situation Understanding for Casual Communication in Humans-Robots Interaction

  • Tang, Yongkang;Dong, Fangyan;Yoichi, Yamazaki;Shibata, Takanori;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권1호
    • /
    • pp.1-11
    • /
    • 2015
  • A concept of Deep Level Situation Understanding is proposed to realize human-like natural communication (called casual communication) among multi-agent (e.g., humans and robots/machines), where the deep level situation understanding consists of surface level understanding (such as gesture/posture understanding, facial expression understanding, speech/voice understanding), emotion understanding, intention understanding, and atmosphere understanding by applying customized knowledge of each agent and by taking considerations of thoughtfulness. The proposal aims to reduce burden of humans in humans-robots interaction, so as to realize harmonious communication by excluding unnecessary troubles or misunderstandings among agents, and finally helps to create a peaceful, happy, and prosperous humans-robots society. A simulated experiment is carried out to validate the deep level situation understanding system on a scenario where meeting-room reservation is done between a human employee and a secretary-robot. The proposed deep level situation understanding system aims to be applied in service robot systems for smoothing the communication and avoiding misunderstanding among agents.

도서관에서 로봇 활용에 대한 사례 연구: 국립중앙도서관을 중심으로 (A Case Study on Using Robot at the Library: Focusing on the case of National Library of Korea)

  • 김경철
    • 정보관리학회지
    • /
    • 제37권4호
    • /
    • pp.61-80
    • /
    • 2020
  • 이 연구는 도서관에서 도입 및 운영 중인 로봇에 대한 분석을 통해 다양한 활용 방안과 기능 개선 방안을 제안하고자 하였으며, 이를 위하여 먼저 국내외 16개 도서관이 운영 중인 로봇의 종류, 기능에 대해서 살펴보았다. 대부분 사서보조업무(장서점검, 자료이송 등)와 이용자 서비스업무(도서관 안내, 자료검색 보조 등)에 활용되고 있었다. 그리고 국립중앙도서관이 도입한 로봇의 특징과 기능적 한계를 살펴보았다. 이러한 결과를 종합하여, 1) 로봇의 추가기능 개발 필요성, 2) 방역 및 안전관리 로봇 도입 필요성, 3) 국가차원의 로봇 확산정책의 필요성, 4) 로봇생태계 구축의 필요성을 제안하였다.