This study is to develop a diagnostic model for the effective introduction of smart factories in the manufacturing industry, to diagnose SMEs that have difficulties in building their own smart factory compared to large enterprise, to identify the current level and to present directions for implementation. IT, AT, and OT experts diagnosed 18 SMEs using the "Smart Factory Capacity Diagnosis Tool" developed for smart factory level assessment of companies. They analyzed the results and assessed the level by smart factory diagnosis categories. Companies' smart factory diagnostic mean score is 322 out of 1000 points, between 1 level (check) and 2 level (monitoring). According to diagnosis category, Factory Field Basic, R&D, Production/Logistics/Quality Control, Supply Chain Management and Reference Information Standardization are high but Strategy, Facility Automation, Equipment Control, Data/Information System and Effect Analysis are low. There was little difference in smart factory level depending on whether IT system was built or not. Also, Companies with large sales amount were not necessarily advantageous to smart factories. This study will help SMEs who are interested in smart factory. In order to build smart factory, it is necessary to analyze the market trends, SW/ICT and establish a smart factory strategy suitable for the company considering the characteristics of industry and business environment.
Generally, plasma nitriding process has composed with a nitriding layer within glow discharge region occurred by energy exchange. The dissociations of nitrogen molecules are very difficult to make neutral atoms or ionic nitrogen species via glow discharge area. However, the captured electrons in which a double-folded screen with same potential cathode can stimulate and come out some single atoms or activated ionic species. It was showed an important thing that is called "hat is a dominant component in this nitriding process?" in plasma nitriding process and it can take an effective species for without compound layer. During a plasma nitriding process, it was able to estimate with analyzing and identification by optical emission spectroscopy (OES) study. And then we can make comparative studies on the nitrogen transfer with plasma nitriding and ATONA process using plasma diagnosis and metallurgical observation. From these observations, we can understand role of active species of nitrogen, like N, $N^+$, ${N_2}^+$, ${N_2}^*$ and $NH_x$-radical, in bulk plasma of each process. And the same time, during DC plasma nitriding and other processes, the species of FeN atom or any ionic nitride species were not detected by OES analyzing.
본 연구는 빅데이터 품질 진단의 핵심 요소인 도메인 기반 품질 진단을 위한 도메인 자동 판별에 관한 연구다. 빅데이터의 가치와 활용도의 증가와 4차 산업혁명의 대두로, 법률, 의료, 금융 등 IT와 융합된 다양한 분야에서 빅데이터를 활용하여 새로운 가치를 창출하려는 노력을 진행중이다. 하지만, 신뢰도가 낮은 데이터에 기반한 분석은 과정과 결과 모두에서 치명적인 문제를 발생하며, 분석 결과에 따른 판단 또한 신뢰하기 어려워 진다. 이처럼 신뢰도가 높은 데이터의 필요성 또한 증가하였지만, 데이터의 품질 확보에 대한 연구와 그에 대한 결과는 미비하다. 본 연구는 데이터 품질 향상을 위한 진단 평가의 핵심적 요소인 도메인 기반 품질 진단에서, 수작업으로 진행되었던 도메인 판별 작업을 머신러닝을 이용하여 자동화 함으로써, 작업시간을 단축하는 것을 목표로 한다. 데이터 베이스에 저장된, 도메인이 판별되어 있는 데이터의 특성에 관한 정보들을 추출하여 변수화하고, 이를 머신러닝을 이용하여 도메인 판별을 자동화 한다. 이를 빅데이터 품질 진단에 활용하고, 품질 향상에 기여하도록 한다.
본 논문은 현행 국내 우편기계 유지보수 체계의 문제점을 기술하고 이에 대한 개선 방안으로 현 우편기계 유지보수 방식과 다른 방식에 대해 경제성 및 효율성 측면에서 AHP 방식에 근거하여 조사한 결과를 제시하였다. 아울러 현 우편기계 유지보수 방식에서 정의되지 않은 예방 및 고장 수리에 대한 표준 절차와 우편기계 유지보수 이력관리 및 정보 공유 체계를 위한 유지보수 기술 지원 센터 운영 모델을 제시하였다. 제안된 우편기계 유지보수 방법은 우편기계 유지보수의 안전성과 효율성에 기여할 수 있다.
공동주택 유지관리 업무를 효율적으로 진행하기 위해서는 사후보전인 유지관리업무에서 벗어나 예방 차원의 관리체계로의 전환이 요구된다. 이를 위해서는 시설물의 점검 진단 교체 등의 일련의 작업을 시스템화 하는 것이 필요하며, 이보다 앞서 유지관리 업무의 표준화가 선행되어야 할 것이다. 따라서 본 연구에서는 현행 공공임대주택 유지관리 업무의 문제점을 분석하고 체계적인 관리를 위해서 전문가와의 1:1면담을 통해 입주자, 관리사무소, 본사의 업무체계로 구분하고 BPMN(Business Process Modeling Notation) 방식을 이용하여 일반관리 시설물관리 수선 및 보수 장기수선 업무 프로세스로 구분하여 제시하였다. 본 연구에서 제시한 표준업무체계는 공동주택 관리 시 업무의 효율성 제고를 통해 생산성 향상을 도모하고 지속적인 데이터 관리를 기반으로 공정성 및 투명성을 제공할 수 있을 것으로 기대한다. 또한 공동주택 유지관리 비용 및 진단조치 관리를 위한 시스템 개발 시 기초 자료로 활용될 수 있을 것이라 판단된다. 향후 더욱 더 객관적이고 표준화된 업무체계를 제시하기 위해서는 현장적용 후 입주자, 관리사무소, 본사 의견 및 업무 흐름에 따라 생산성 데이터 분석을 통해 추가적인 개선작업이 진행되어야 할 것이다.
Due to the increasing interest in safety and consistent product quality over a past few decades, demand for effective quality monitoring and safe operation in the modern industry has propelled research into statistical based fault detection and diagnosis methods. This paper describes the application of Hotelling $T^2$ index based Principal Component Analysis (PCA) method for fault detection and diagnosis in industrial processes. Multivariate statistical process control techniques are now widely used for performance monitoring and fault detection. Conventional methods such as PCA are suitable only for steady state processes. These conventional projection methods causes false alarms or missing data for the systems with transient values of processes. These issues significantly compromise the reliability of the monitoring systems. In this paper, a reliable method is used to overcome false alarms occur due to varying process conditions and missing data problems in transient states. This monitoring method is implemented and validated experimentally along with matlab. Experimental results proved the credibility of this fault detection method for both the steady state and transient operations.
Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.
본 논문에서는 산업 현장에서 효율적인 전동기 제어를 수행하도록 전동기 보호 릴레이, 스마트 회로 차단기 및 가변 속도 드라이브 등의 스마트 전동기 장치를 하나의 통합 모듈로 대체한 지능형 전동기 제어 시스템을 제안하였다. 제안된 지능형 전동기 제어 시스템은 CIP(Common Industrial Protocol)기반의 네트워크를 통하여 지능형 전동기 제어 시스템에 연결된 각각의 전동기 또는 부하에 대한 중요 데이터를 쉽게 모니터링할 수 있으므로 언제나 정확한 프로세스 제어가 가능하고, 고장 정보 및 기록에 실시간으로 액세스하여 진단을 간소화하며, 장비 가동 중단 시간을 최소화할 수 있다.
This paper proposed a control simulation method for design and verification of the transport system in an automobile assembly line based on digital manufacturing system. The design of the transport system involves two major activities: mechanical design (device specification) and electrical design (device behavior and system control). Conventionally, the simulation and emulation system of the transport system focuses on the abstract level, which mainly deals with design verification, alternative comparison, and system diagnosis. Although it can provide overall system visibility in monitoring how well it works in the process and view, its simulation models are not sufficiently realistic to be used for a detailed design or for implementation purposes. In this paper, a digital simulation model for a transport system in an automotive assembly line is constructed by adapting a digital manufacturing methodology. We use the concept of the "Virtual Probe", which transport a carrier instead of the belt of the conveyor. In conclusion, the proposed method is valuable in the process of test run in the shop floor. This method would reduce the time and effort for validating the manufacturing system and improve the productivity and integrity of the control program.
Automation control and the data for control of industrial equipment for the diagnosis and prediction is a key to success in the 4th industrial revolution. It increases process efficiency and productivity through data collection, realtime monitoring, and the data analysis. However, university and research environment are still suffering from logging the data in manual way, and we occasionally loss the equipment data logging due to the lack of automatic data logging system. State variable presents the current condition of the equipment operation which is closely related to process result, and it is valuable to monitor and analyze the data for the equipment health monitoring. In this paper, we demonstrate the collection of equipment state variable data via programmable logic controller (PLC) and the visualization of the collected data over the Web access supervisory control and data acquisition (SCADA). Test vehicle for the implementation of the suggested SCADA system is a relay switched physical vapor deposition system in the university environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.