• 제목/요약/키워드: Industrial microbiology

검색결과 675건 처리시간 0.021초

표고버섯 품종 산마루1호, 천장3호를 구분할 수 있는 CAPS Marker 개발 (Development of Cleaved Amplified Polymorphic Sequence Markers for the Identification of Lentinula edodes Cultivars Sanmaru 1ho and Chunjang 3ho)

  • 문수윤;이화용;김명길;가강현;고한규;정종욱;구창덕;류호진
    • 한국균학회지
    • /
    • 제45권2호
    • /
    • pp.114-120
    • /
    • 2017
  • 표고버섯은 주로 아시아 국가에서 재배되는 식용 버섯이다. 표고버섯은 최근 국내에서 신품종의 개발이 활발히 이루어지고 있으며, 국내외적으로 품종의 보호가 중요해짐에 따라 표고의 품종을 구분할 수 있는 효율적인 마커 개발이 요구되고 있다. 본 연구에서는 산마루1호와 천장3호를 구분할 수 있는 CAPS (cleaved amplified polymorphic sequence) 마커를 개발하였다. 이 연구에서 개발된 CAPS 마커는 단핵균주인 B17의 표준유전체 정보와 연구에 사용된 10개 균주의 resequencing 정보를 바탕으로 개발되었다. 산마루1호는 scaffold9번, 1630048의 염기서열 G가 T로 변한 SNP를 포함하여 PCR 후 제한효소 TspR I을, 천장3호는 scaffold13번, 920681의 염기서열 G가 A로 변한 single nucleotide polymorphism (SNP)를 포함하여 PCR 후, 제한효소 Xho I을 처리하였을 때 다른 균주들과 구분되었다. 따라서 이를 마커로 개발하였다.

Cloning, Expression, and Characterization of Endoglucanase Gene egIV from Trichoderma viride AS 3.3711

  • Huang, Xiaomei;Fan, Jinxia;Yang, Qian;Chen, Xiuling;Liu, Zhihua;Wang, Yun;Wang, Daqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.390-399
    • /
    • 2012
  • Endoglucanase gene egIV was cloned from Trichoderma viride AS 3.3711, an important cellulose-producing fungus, by using an RT-PCR protocol. The egIV cDNA is 1,297 bp in length and contains a 1,035 bp open reading frame encoding a 344 amino acid protein with an estimated molecular mass of 35.5 kDa and isoelectronic point (pI) of 5.29. The expression of gene egIV in T. viride AS 3.3711 could be induced by sucrose, corn straw, carboxymethylcellulose (CMC), or microcrystalline cellulose, but especially by CMC. The transcripts of egIV were regulated under these substrates, but the expression level of the egIV gene could be inhibited by glucose and fructose. Three recombinant vectors, pYES2-xegIV, $pYES2M{\alpha}$-egIV, and $pYES2M{\alpha}$-xegIV, were constructed to express the egIV gene in Saccharomyces cerevisiae H158. The CMCase activity of yeast transformants $IpYES2M{\alpha}$-xegIV was higher than that of transformant IpYES2-xegIV or $IpYES2M{\alpha}$-egIV, with the highest activity of 0.13 U/ml at induction for 48 h, illustrating that the modified egIV gene could enhance CMCase activity and that $MF{\alpha}$ signal peptide from S. cerevisiae could regulate exogenous gene expression more effectively in S. cerevisiae. The recombinant EGIV enzyme was stable at pH 3.5 to 7.5 and temperature of $35^{\circ}C$ to $65^{\circ}C$. The optimal reaction condition for EGIV enzyme activity was at the temperature of $55^{\circ}C$, pH of 5.0, 0.75 mM $Ba^{2+}$, and using CMC as substrate. Under these conditions, the highest activity of EGIV enzyme in transformant $IpYES2M{\alpha}$-xegIV was 0.18 U/ml. These properties would provide technical parameters for utilizing cellulose in industrial bioethanol production.

Purification and Characterization of a Thermostable Xylanase from Paenibacillus sp. NF1 and its Application in Xylooligosaccharides Production

  • Zheng, Hong-Chen;Sun, Ming-Zhe;Meng, Ling-Cai;Pei, Hai-Sheng;Zhang, Xiu-Qing;Yan, Zheng;Zeng, Wen-Hui;Zhang, Jing-Sheng;Hu, Jin-Rong;Lu, Fu-Ping;Sun, Jun-She
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.489-496
    • /
    • 2014
  • High levels of extracellular xylanase activity (211.79 IU/mg) produced by Paenibacillus sp. NF1 were detected when it was submerged-cultured. After three consecutive purification steps using Octyl-Sepharose, Sephadex G75, and Q-Sepharose columns, a thermostable xylanase (XynNF) was purified to homogeneity and showed a molecular mass of 37 kDa according to SDS-PAGE. The specific activity of the purified XynNF was up to 3,081.05 IU/mg with a 14.55-fold purification. The activity of XynNF was stimulated by $Ca^{2+}$, $Ba^{2+}$, DTT, and ${\beta}$-mercaptoethanol, but was inhibited by $Fe^{2+}$, $Zn^{2+}$, $Fe^{2+}$, $Cu^{2+}$, SDS, and EDTA. The purified XynNF displayed a greater affinity for oat spelt xylan with the maximal enzymatic activity at $60^{\circ}C$ and pH 6.0. XynNF, which was shown to be cellulose-free, with high stability at high temperature ($70^{\circ}C-80^{\circ}C$) and low pH range (pH 4.0-7.0), is potentially valuable for various industrial applications. The enzyme hydrolyzed oat spelt xylan to yield mainly xylooligosaccharides (95.8%) of 2-4 degree of polymerization (DP2-4). Moreover, the majority of the xylooligosacharides (DP2-4) products was xylobiose (61.5%). The thermostable xylanase (XynNF) thus seems potentially usefull in the production of xylooligosaccharides.

Media Optimization of Corynebacterium glutamicum for Succinate Production Under Oxygen-Deprived Condition

  • Jeon, Jong-Min;Thangamani, Rajesh;Song, Eunjung;Lee, Hyuk-Won;Lee, Hong-Weon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.211-217
    • /
    • 2013
  • Corynebacterium glutamicum is one of the well-studied industrial strain that is used for the production of nucleotides and amino acids. Recently, it has also been studied as a possible producer of organic acids such as succinic acid, based on its ability to produce organic acids under an oxygen deprivation condition. In this study, we conducted the optimization of medium components for improved succinate production from C. glutamicum under an oxygen deprivation condition by Plackett-Burman design and applied a response surface methodology. A Plackett-Burman design for ten factors such as glucose, ammonium sulfate, magnesium sulfate, potassium phosphate ($K_2HPO_4$ and $KH_2PO_4$), iron sulfate, manganese sulfate, biotin, thiamine, and sodium bicarbonate was applied to evaluate the effects on succinate production. Glucose, ammonium sulfate, magnesium sulfate, and dipotassium phosphate were found to have significant influence on succinate production, and the optimal concentrations of these four factors were sequentially investigated by the response surface methodology using a Box-Behnken design. The optimal medium components obtained for achieving maximum concentration of succinic acid were as follows: glucose 10 g/l, magnesium sulfate 0.5 g/l, dipotassium phosphate ($K_2HPO_4$) 0.75 g/l, potassium dihydrogen phosphate ($KH_2PO_4$) 0.5 g/l, iron sulfate 6 mg/l, manganese sulfate 4.2 mg/l, biotin 0.2 mg/l, thiamine 0.2 mg/l, and sodium bicarbonate 100 mM. The parameters that differed from a normal BT medium were glucose changed from 40 g/l to 10 g/l, dipotassium phosphate ($K_2HPO_4$) 0.5 g/l changed to 0.75 g/l, and ammonium sulfate ($(NH_4)_2SO_4$) 7 g/l changed to 0 g/l. Under these conditions, the final succinic acid concentration was 16.3 mM, which is about 1.46 fold higher than the original medium (11.1 mM) at 24 h. This work showed the improvement of succinate production by a simple change of media components deduced from sequential optimization.

Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7

  • Nam, Ji-Hyun;Ventura, Jey-R S.;Yeom, Ick Tae;Lee, Yongwoo;Jahng, Deokjin
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권11호
    • /
    • pp.1951-1964
    • /
    • 2016
  • 1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate ($V_{max}$), and half-saturation concentration ($K_m$) were 0.58 mg-protein/mg-dioxane, $0.037mg-dioxane/mg-protein{\cdot}h$, and 93.9 mg/l, respectively. For AS, Y, $V_{max}$, and $K_m$ were 0.34 mg-protein/mg-dioxane, $0.078mg-dioxane/mg-protein{\cdot}h$, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.

Keratinase 생산균 Bacillus subtilis SMMJ-2의 변이주 분리와 효소학적 특성 비교 (Isolation of Mutant Strains from Keratinase Producing Bacillus subtilis SMMJ-2 and Comparision of Their Enzymatic Properties)

  • 고희선;김현수
    • KSBB Journal
    • /
    • 제25권5호
    • /
    • pp.429-436
    • /
    • 2010
  • 본 연구는 선행연구에서 얻은 keratinase 효소의 활성이 높은 균주 Bacillus subtilis SMMJ-2를 UV 조사에 의해 개량하여 mutant No. 2를 얻었으며, keratinase의 생산성 향상을 위한 최적 탄소원, 최적 질소원의 조건 하에서 본 효소를 대량생산하여 정제하고, 야생주와 변이주 간의 효소활성의 변화 및 정제된 효소 간의 효소화학적인 성질을 비교하였다. Mutant No. 2의 keratinase 생산을 위한 최적 탄소원과 질소원은 각각 glucose와 soybean meal로 나타나, 야생주의 경우와는 최적 질소원을 달리했으며, 효소활성에 있어서는 야생주보다 40% 정도 상승하였다. 변이주의 효소가 야생주의 효소보다 높은 배양온도에 대하여 더 안정적인 활성으로 생산되며, 효소 생산을 위한 최적 pH는 7.0으로, 비교적 효소생산이 가능한 pH 영역대은 6~9로 나타났다. Bacillus subtilis SMMJ-2와 mutant No. 2에서 생산된 keratinase는 DEAEsephacel 크로마토그래피법와 겔여과 크로마토그래피법으로 최종 정제되었다. 정제과정 중 DEAE-sephacel 크로마토그래피 상에서 나타나는 2개의 효소피크는 Bacillus subtilis SMMJ-2의 메인 효소피크의 위치와 mutant No. 2에서의 메인 효소피크의 위치가 전환되어 나타났다. SDS-PAGE 상에서의 각각의 효소 분자량은 B. subtilis SMMJ-2의 경우에 28 kDa, mutant No. 2의 경우에 42 kDa 로 추산되었다

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress-Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain

  • Park, Jihoon;Lee, SuRin;Lee, Min Ju;Park, Kyunghoon;Lee, Seungki;Kim, Jihyun F.;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1420-1429
    • /
    • 2020
  • Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.

Secondary Fermented Extract of Chaga-Cheonggukjang Attenuates the Effects of Obesity and Suppresses Inflammatory Response in the Liver and Spleen of High-Fat Diet-Induced Obese Mice

  • Na, Ha Gyoon;Park, Yuna;Kim, Min-Ah;Lee, Jin Woo;So, Gyeongseop;Kim, Sung Hyeok;Jang, Ki-Hyo;Kim, Mi-Ja;Namkoong, Seung;Koo, Hyun Jung;Lee, Sung Ryul;Sohn, Eun-Hwa
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권5호
    • /
    • pp.739-748
    • /
    • 2019
  • Cheonggukjang and chaga mushrooms have numerous health benefits, and have been used in alternative medicine. Therefore, a powder mixture of 98: Cheonggukjang and 2: Chaga extracts was fermented with Lactobacillus acidophilus KCTC3925 (FCC) and its anti-obesity effects in high-fat diet (HFD)-induced obese mice were determined. Five-week-old male ICR mice were fed a normal diet or HFD in the presence or absence of 3% and 5% FCC by weight (n = 10 per group). After 12 weeks, the mice were sacrificed, and the serum and tissue samples were collected for analysis. Body weight and epididymal fat pad weight were significantly lowered in the 3% and 5% FCC groups compared with those in the HFD control group (p < 0.01). FCC supplementation suppressed serum triglyceride and increased serum HDL-C levels (p < 0.01). Serum GOT, GPT, and leptin levels, hepatic COX-2 mRNA expression, and splenic COX-2 and IL-4 mRNA expression were significantly higher in the HFD groups than in the control group (p > 0.05); however, except for splenic IL-4 levels, the increases were significantly attenuated by FCC supplementation. Expression of ICAM-1, an aortic inflammatory marker, was significantly increased in the HFD group; this effect was suppressed in the 3% FCC group (p < 0.01) but not in the 5% FCC group. FCC suppressed the body weight and epididymal fat pad weight gain, as well as inflammatory responses in the liver and spleen of HFD-fed mice. Thus, FCC supplementation will be beneficial for the treatment of obesity-related effects.

생쥐 비만모델에서 Weissella confusa WIKIM51 식이에 따른 지방합성 및 에너지 대사 조절로 인한 체지방 감소 효과 (Oral Administration of Weissella confusa WIKIM51 Reduces Body Fat Mass by Modulating Lipid Biosynthesis and Energy Expenditure in Diet-Induced Obese Mice)

  • 임슬기;이지은;박성수;김선용;박상민;목지예;장현아;최학종
    • 한국미생물·생명공학회지
    • /
    • 제50권1호
    • /
    • pp.135-146
    • /
    • 2022
  • 비만은 지질대사 불균형으로 인한 이상지질혈증과 밀접한 관련이 있으며, 장내 미생물의 군집 및 기능의 변화를 유도하여 장내 미생물 불균형을 초래할 수 있다. 본 연구에서는 민들레 김치에서 분리한 김치 유래 유산균 W. confuse WIKIM51의 항비만 효능을 in vitro와 in vivo에서 평가하였다. 먼저, WIKIM51은 지방세포 분화를 유도한 3T3-L1 세포에서 지방대사 관련 유전자의 발현 조절을 통해 지방구 생성을 억제하였다. 후천적 비만 동물 모델을 이용한 in vivo 실험에서 10주간 W. confusa WIKIM51의 경구 투여는 고지방식이에 의해 유도된 체중 증가를 현저히 감소시켰다. 특히, 부고환 주위 지방량, 조직학적 분석을 통한 지방구의 크기 및 혈중 지표인 TG, TC, adiponectin, 그리고 leptin의 수준이 HFD군에 비해 W. confusa WIKIM51 섭취군에서 유의적으로 개선되었다. 또한 W. confusa WIKIM51 섭취군은 Ppar𝛾, C/EBP𝛼, Srebp-1c, Fas와 같은 지방 생성 및 지방산 합성 관련 유전자의 발현을 억제하였고, 반면 에너지 소비 관련 유전자 Ppar𝛼와 Cpt1의 발현은 증가시켰다. 더 나아가, W. confusa WIKIM51은 고지방식이로 인해 유도된 Firmicutes/Bacteroidetes 비율을 정상식이군의 수준으로 감소시켜 장내미생물의 불균형을 개선시켰다. 이러한 결과들을 종합해 볼 때, W. confusa WIKIM51의 섭취는 고지방식이로 인한 지방 축적을 억제하여 효과적으로 비만을 개선할 수 있으며, 이는 항비만 기능성 소재 및 식품 개발로의 활용이 가능함을 제시한다.