• 제목/요약/키워드: Industrial Cloud

검색결과 413건 처리시간 0.024초

머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측 (Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm)

  • 김나은;한희선;아룰모지엘렌체쟌;문병은;최영우;김현태
    • 생물환경조절학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2022
  • 서부 경남 지역 중 딸기재배로 유명한 지역 40개 농가를 대상으로 한 조사에 따르면 국산품종 중에서 "설향"이 65.0%으로서 가장 선호하고 있는 것으로 나타났다. 그리고 현재의 농업은 4차 산업혁명으로 스마트팜(Smart Farm)의 기술이 더욱 발전하고 있는 실정이다. 그러나 각 생육단계가 어떤 상황일 때 딸기의 생산량이 최적에 달하는지 대한 기준이 없으며, 이러한 판단기준은 아직까지 스마트팜에 경험이 있는 농업인의 의사에 달려있다는 문제점이 있다. 따라서 본 연구에서는 딸기의 생육상황에 대한 생산량 예측을 통해 선진화된 스마트팜 시스템을 구축하고자 한다. 실험 장소는 경상남도 사천시의 딸기 농가에서 수행하였으며, 총 3곳을 대상으로 데이터 수집을 진행하였다. 실험 대상의 모든 온실 내에서 재배하는 딸기의 품종은 '설향'이다. 작물 데이터의 수집 항목은 작물의 엽수, 꽃수, 과실수, 초장, 잎의 길이, 엽록소 함량이며, 환경 데이터의 수집 항목은 온도, 습도, 조도이다. 기존의 농가 단위의 스마트팜의 문제점 보완 및 개선을 통하여 고품질의 작물 생장 상태를 유지하기 위해 K-fold 교차검증, Lasso 회귀분석, MAPE 검증을 통해 예측모델을 도출하였으며, MAPE 검증 결과 값으로 0.511(꽃 예측)과 0.488(과일 예측)의 값이 나타났다. 본 연구는 스마트팜 데이터 구축을 위해서는 AI를 통해 성장상태별 수확량을 예측하였으며, 이를 농가 및 농업 관련 기업에 활용해 농업 서비스가 편리할 것으로 판단된다.

RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링 (Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+)

  • 김준성;서일원;신재현;정성현;윤세훈
    • 한국수자원학회논문집
    • /
    • 제54권7호
    • /
    • pp.495-507
    • /
    • 2021
  • 최근 도시와 산업의 발달과 함께 하천, 호소 등 수환경에서의 수질 오염사고가 빈번하게 일어나고 있어 어류폐사, 취수중단, 친수활동 저해 등 심각한 수생태계 및 사회경제적 피해가 발생하고 있다. 따라서 이에 대한 대응책으로 수질모델링을 통한 오염물질의 이동 및 확산에 대한 사전 예측이 필요하다. 본 연구에서는 2차원 하천흐름/수질해석 프로그램인 RAMS+의 현장 적용성 및 예측 정확도를 검증하기 위해 만곡하천인 섬강에서 현장실험을 수행하였다. 모의결과 흐름해석모형 HDM-2Di와 수질해석모형 CTM-2D-TX는 현장실험에서 관측된 2차원 흐름 특성과 오염물질의 거동 및 혼합 양상을 정확하게 재현하였다. 특히 하천의 양안과 만곡부에서 국부적으로 발생하는 저유속 흐름에 의해 오염물질의 거동이 지체되는 저장대 효과를 정확하게 모의하였다. 나아가서 하천 만곡부에서 이차류가 야기하는 오염물질 3차원적 혼합 양상을 2차원 분산계수를 통해 효과적으로 재현하였다. 오염물질의 위험농도 체류시간은 취수중단 기간을 결정하는데 있어 매우 중요한 요소이다. 본 연구에서는 CTM-2D-TX 모의결과를 기반으로 오염물질 위험농도 체류시간을 계산하였고, 위험농도 체류시간의 공간적 분포가 하폭방향으로 큰 편차를 지니고 있음을 확인하였다. 이러한 오염물질의 2차원적 체류 특성은 1차원 수질모형을 통해서는 예측이 불가능하기 때문에 효율적이고 정확한 수질사고대응을 위해 2차원 수질모형의 활용이 필요함을 본 연구의 결과는 시사하고 있다.

기계학습법을 이용한 IoMT 핀테크 모델을 기반으로 한 구조화 스토리지에서의 빅데이터 관리 연구 (Big Data Management in Structured Storage Based on Fintech Models for IoMT using Machine Learning Techniques)

  • 김경실
    • 산업과 과학
    • /
    • 1권1호
    • /
    • pp.7-15
    • /
    • 2022
  • 사물인터넷(IoT) 기술은 최근 의료사물인터넷(IoMT)으로 정의된 대량의 의료 데이터를 처리하여 발전을 위해 개발된 의료분야에서 많이 활용되고 있다. 수집된 광범위한 의료 데이터는 수집된 의료 데이터를 처리하기 위해 구조화된 방식으로 클라우드에 저장된다. 그러나 방대한 양의 의료 데이터를 효과적으로 처리하는 것은 쉽지 않기 때문에 의료분야 구조 데이터를 개발하는 것이 필요하다. 본 논문에서는 IoMT에서 수집된 구조화된 건강 관리 데이터를 처리하기 위한 기계 학습 모드를 개발하였다. 광범위한 의료 데이터를 처리하기 위해 본 논문에서는 의료 데이터 처리를 위한 MTGPLSTM 모델을 제안하였다. 제안된 모델은 의료 정보 처리를 위한 선형 회귀 모델을 통합한다. 개발된 모델 이상치 모델은 IoMT에서 수집된 COVID-19 의료 데이터들의 평가 및 예측을 위해 FinTech 모델을 기반으로 구현되었다. 제안된 MTGPLSTM 모델은 감염 확산 방지를 위한 계획 계획을 예측하고 평가하기 위한 회귀 모델로 구성된다. 개발된 모델 성능은 LR, SVR, RFR, LSTM 및 제안된 MTGPLSTM 모델과 같은 서로 다른 분류기를 고려하였으며 1GB, 2GB, 3GB 등 데이터 크기가 다르다는 점도 주요하게 고려되었다. 제안된 MTGPLSTM 모델이 전 세계 데이터에 대해 최대 4% 감소된 MAPE 및 RMSE 값을 달성하였고 중국의 경우 기존 분류기보다 최대 6% 최소인 최소 MAPE(0.97)이 달성되었다.

악성코드 대응을 위한 신뢰할 수 있는 AI 프레임워크 (Trustworthy AI Framework for Malware Response)

  • 신경아;이윤호;배병주;이수항;홍희주;최영진;이상진
    • 정보보호학회논문지
    • /
    • 제32권5호
    • /
    • pp.1019-1034
    • /
    • 2022
  • 4차 산업혁명의 초연결사회에서 악성코드 공격은 더욱 기승을 부리고 있다. 이러한 악성코드 대응을 위해 인공지능기술을 이용한 악성코드 탐지 자동화는 새로운 대안으로 주목받고 있다. 그러나, 인공지능의 신뢰성에 대한 담보없이 인공지능을 활용하는 것은 더 큰 위험과 부작용을 초래한다. EU와 미국 등은 인공지능의 신뢰성 확보방안을 강구하고 있으며, 2021년 정부에서는 신뢰할 수 있는 인공지능 실현 전략을 발표했다. 정부의 인공지능 신뢰성에는 안전과 설명가능, 투명, 견고, 공정의 5가지 속성이 있다. 우리는 악성코드 탐지 모델에 견고를 제외한 안전과, 설명가능, 투명, 공정의 4가지 요소를 구현하였다. 특히 외부 기관의 검증을 통해 모델 정확도인 일반화 성능의 안정성을 입증하였고 투명을 포함한 설명가능에 중점을 두어 개발하였다. 변화무쌍한 데이터에 의해 학습이 결정되는 인공지능 모델은 생명주기 관리가 필요하다. 이에 인공지능 모델을 구성하는 데이터와 개발, 서비스 운영을 통합하는 MLOps 프레임워크에 대한 수요가 늘고 있다. EXE 실행형 악성코드와 문서형 악성코드 대응 서비스는 서비스 운영과 동시에 데이터 수집원이 되고, 외부 API를 통해 라벨링과 정제를 위한 정보를 가져오는 데이터 파이프라인과 연계하도록 구성하였다. 클라우드 SaaS 방식과 표준 API를 사용하여 다른 보안 서비스 연계나 인프라 확장을 용이하게 하였다.

개인정보 자기결정권 확대를 위한 데이터 신탁제도 도입 방안 연구 (A Study on the Introductioin of Data Trusts System to Expand the Rights of Privacy Self-Determination)

  • 장근재;이승용
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.29-43
    • /
    • 2022
  • 데이터 경제는 현대 사회에서 디지털 혁신과 함께 빠르게 성장하고 있다. 기업은 다양한 유형의 데이터를 수집·활용하여 새로운 수익을 창출하길 희망하고, 개인정보를 포함한 데이터의 가치는 더욱 높아지고 있다. 하지만 데이터 산업 정책에 대한 연구 중 정보 주체에 대한 논의는 부족한 상황이다. 개인정보는 보호 가치를 넘어서 높은 유용성을 가지고 있다. 이러한 관점에서 데이터 신탁제도는 개인정보의 안전한 활용을 위한 좋은 해결책이다. 데이터 신탁을 활용한 구글의 토론토 스마트시티 구축 사례, 일본의 정보은행 사례, 국내 최초의 데이터 배당을 시도한 경기도의 사례를 소개한다. 데이터 신탁 사례와 동향 파악을 통해 데이터 신탁 개념을 명확히 하고 제도 활성화에 필요한 기술적 요인을 추출하고 비즈니스 모델을 제안하고자 한다. 이를 시사점으로 하여 데이터 신탁제도를 통해 안전한 데이터의 활용과 새로운 서비스 시장 창출뿐만 아니라 새로운 데이터 경제를 구성하는데 크게 기여할 것으로 기대한다.

DSCP 재정의를 통한 효율적인 QoS 정책 구현: 네트워크 부하 분산을 위해 (Efficient QoS Policy Implementation Using DSCP Redefinition: Towards Network Load Balancing)

  • 이한우;김수환;박건우
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.715-720
    • /
    • 2023
  • 군은 4차 산업혁명으로 AI, 클라우드 컴퓨팅, 드론봇 운용 등 혁신적인 변화를 추진하고 있다. 이러한 변화는 하급 제대의 모든 전투원에 이르기까지 IoT 기반의 네트워킹이 발생함으로써 정보교환 요구량이 급격히 증가할 것으로 예상된다. 따라서 지상망, 정지위성 및 저궤도 소형통신 위성 등 다양한 기반체계를 통해 효율적인 정보유통을 보장해야 하며, 이를 통해 유통되는 정보교환요구량을 적절히 분산시켜야 할 필요성이 제기된다. 본 연구에서는 정보유통 시 QoS (Quality of Service)와 밀접히 관련된 DSCP에 11개 우선순위를 재정의하고, 군집 분석을 통해 식별된 국방 "정보교환요구목록"의 군집 그룹과 1:1로 매핑하는 연구를 수행하였다. 연구의 목적은, 중요한 정보교환요구 목록들이 우선순위를 갖고 라우팅이 되도록 QoS 정책을 재수립함으로써, 제한된 대역폭을 갖는 다계층 통합망(지상망, 정지위성망, 저궤도 소형통신위성망) 내에서 효율적인 정보유통을 보장하기 위한 것이다. 본 논문에서는 군집 분석을 통해 분류된 정보교환요구목록이 DSCP에 얼마나 잘 할당되었는가를 M&S를 통해 평가하였으며, 제안하는 DSCP 재분류를 통해, 대역폭이 제한된 네트워크 환경에서 보다 효율적으로 정보가 유통되는 것을 확인하였다.

디지털콘텐츠 산업육성 사업 구조개편 방안 연구 (A Study on the Revitalization of Digital Contents Industry)

  • 장진현
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권5호
    • /
    • pp.159-167
    • /
    • 2023
  • 디지털 기술의 융·복합화와 급변하는 디지털 산업의 특성으로 인해, 그간 진행해온 기술 분야별 육성사업은 그 사업의 경계가 모호해져 사업효과가 분산되고, 기술발전을 수용하는 유연한 산업육성에 한계가 도달한 것으로 보인다. 따라서 향후 미래의 디지털콘텐츠 산업의 변화 방향에 효과적으로 대응하기 위한 디지털콘텐츠 산업육성사업 구조개편 및 관리체계 개선 방안을 제시하여 디지털콘텐츠 육성사업의 정책을 지원하는 것을 목표로 한다. 정부지원 사업의 구조분석과 진단을 통하여 기존 19개 내역사업과 49개 내내역사업을 7개 내역사업과 17개 내내역사업으로 개편하는 것을 제안하였다. 사업관리 체계 개선 방안으로 사업수행기관이 과다하고 세부사업지원 관리 총괄기관이 부재하여 사업간 유기적 연계 및 시장창출을 위한 규모 있는 사업 추진에 한계가 있으므로 이를 개선하기 위해 사업 관리기능을 총괄하는 총괄기관을 선정하고, 사업관리를 총괄기관으로 일원화하여 사업을 효율적으로 관리하게 할 필요가 있음을 제시하였다.

핀테크 서비스에서 오프라인에서 온라인으로의 신뢰전이에 관한 연구 - 스마트뱅킹을 중심으로 - (A Study on Trust Transfer in Traditional Fintech of Smart Banking)

  • 애제;권순동;이수철;고미현;이보형
    • 경영과정보연구
    • /
    • 제36권3호
    • /
    • pp.167-184
    • /
    • 2017
  • 본 연구에서는 기존에 구축되었던 오프라인뱅킹에서의 신뢰가 새로운 스마트뱅킹 서비스 신뢰에 어느 정도 영향을 미치는가를 규명하였다. 이를 위해 스마트뱅킹 신뢰의 영향요인으로 오프라인뱅킹의 신뢰, 스마트뱅킹의 시스템 품질과 정보품질을 비교연구하였다. 실증연구를 위해 스마트뱅킹 서비스 이용자를 대상으로 186부의 설문지를 회수하였고, 자료분석은 Smart-PLS 2.0을 이용하였다. 분석결과, 오프라인뱅킹 신뢰가 스마트뱅킹 신뢰에 미치는 영향이 유의하게 나타나, 핀테크 서비스에서 신뢰전이가 존재함을 검증하였다. 그리고 이러한 오프라인뱅킹 신뢰가 스마트뱅킹 신뢰에 미치는 영향력은 스마트뱅킹 자체의 특성보다 낮은 것을 입증하였다. 본 연구의 의의는 학술적 측면과 산업적 측면에서 살펴볼 수 있다. 먼저, 학술적 측면에서의 의의이다. 지금까지의 뱅킹관련 연구들은 오프라인뱅킹이나 스마트뱅킹 어느 한 측면에 초점을 맞추어 연구를 수행하였다. 이에 비해 본 연구에서는 오프라인뱅킹의 특성이 스마트뱅킹 특성에 어떻게 영향을 미치는가하는 신뢰전이를 검증했다는 점에서 의의가 있다. 다음으로, 산업적 측면에서의 의의이다. 본 연구에서 시중은행의 오프라인뱅킹 특성이 새로운 스마트뱅킹 서비스의 신뢰에 영향을 준다는 것을 보여주었다. 이것은 신흥 핀테크 업체가 시중 은행에 비해 신뢰구축의 경쟁에서 유리하지 않다는 것을 의미한다. 신흥 핀테크 업체들은 시중은행과 달리 모바일, 소셜, 클라우드, 빅데이터 등은 물론, 현실화되고 있는 사물인터넷, 가상현실 등의 기술로 무장하여 고객의 편의성을 혁신적으로 개선하고 있다. 그러나 이러한 강점만으로는 금융거래에 필요한 충분한 신뢰를 형성할 수 있다고 보장할 수는 없다는 것이다. 이미 신뢰관계에 있는 주거래 은행을 고객들이 잘 바꾸지 않는 관성이 있기 때문이다. 따라서 신흥 핀테크 업체들은 상대적으로 고객접점에 우위에 있는 소셜서비스와 같은 온라인 상호작용의 강점과 다양한 인터넷 서비스와의 연계성을 반영한 파괴적인 부가가치 창출을 위해 노력해야하고, 특히 새로운 서비스에 저항이 낮은 젊은층을 중심으로 한 서비스신뢰 구축을 위해 노력해야 할 것이다.

  • PDF

텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석 (Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques)

  • 정지송;김호동
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.33-54
    • /
    • 2021
  • 최근 4차 산업혁명, 코로나로 인한 뉴노멀 시대의 도래 등을 계기로 인공지능, 빅데이터 연구와 같은 언택트 관련 기술의 중요성이 더욱 급상하고 있다. 각 종 연구 분야에서는 이러한 연구 트렌드를 따라가기 위한 융합적 연구가 본격적으로 시행되고 있으나 원자력 분야의 경우 자연어 처리, 텍스트마이닝 분석 등 인공지능 및 빅데이터 관련 기술을 적용한 연구가 많이 수행되지 않았다. 이에 원자력 연구 분야에 데이터 사이언스 분석기술의 적용 가능성을 확인해보고자 본 연구를 수행하였다. 원자로 연료로 사용된 뒤 배출되는 사용후핵연료 인식 동향 파악에 대한 연구는 원자력 산업 정책에 대한 방향을 결정하고 산업정책 변화를 사전에 대응할 수 있다는 측면에서 매우 중요하다. 사용후핵연료 처리기술은 크게 습식 재처리 방식과 건식 재처리 방식으로 나뉘는데, 이 중 환경 친화적이고 핵비확산성 및 경제성이 높은 건식재처리 기술인 '파이로프로세싱'과 그 연계 원자로 '소듐냉각고속로'의 연구개발에 대한 재평가가 현재 지속적으로 검토되고 있다. 따라서 위와 같은 이유로, 본 연구에서는 사용후핵연료 처리기술인 파이로프로세싱에 대한 언론 동향 분석을 진행하였다. 사용후핵연료 처리기술인 '파이로프로세싱' 키워드를 포함하는 네이버 웹 뉴스 기사 전문의 텍스트데이터를 수집하여 기간에 따라 인식변화를 분석하였다. 2016년 발생한 경주 지진, 2017년 새 정부의 에너지 전환정책 시행된 2010년대 중반 시기를 기준으로 전, 후의 동향 분석이 시행되었고, 빈도분석을 바탕으로 한 워드 클라우드 도출, TF-IDF(Term Frequency - Inverse Document Frequency) 도출, 연결정도 중심성 산출 등의 분석방법을 통해 텍스트데이터에 대한 세부적이고 다층적인 분석을 수행하였다. 연구 결과, 2010년대 이전에는 사용후핵연료 처리기술에 대한 사회 언론의 인식이 외교적이고 긍정적이었음을 알 수 있었다. 그러나 시간이 흐름에 따라 '안전(safety)', '재검토(reexamination)', '대책(countermeasure)', '처분(disposal)', '해체(disassemble)' 등의 키워드 출현빈도가 급증하며 사용후핵연료 처리기술 연구에 대한 지속 여부가 사회적으로 진지하게 고려되고 있음을 알 수 있었다. 정치 외교적 기술로 인식되던 사용후핵연료 처리기술이 국내 정책의 변화로 연구 지속 가능성이 모호해짐에 따라 언론 인식도 점차 변화했다는 것을 확인하였다. 이러한 연구 결과를 통해 원자력 분야에서의 사회과학 연구의 지속은 필수불가결함을 알 수 있었고 이에 대한 중요성이 부각되었다. 또한, 현 정부의 원전 감축과 같은 에너지 정책의 영향으로, 사용후핵연료 처리기술 연구개발에 대한 재평가가 시행되는 이 시점에서 해당 분야의 주요 키워드 분석은 향후 연구 방향 설정에 기여할 수 있을 것이라는 측면에서 실무적 의의를 갖는다. 더 나아가 원자력 공학 분야에 사회과학 분야를 폭넓게 적용할 필요가 있으며, 국가 정책적 변화를 고려해야 원자력 산업이 지속 가능할 것으로 사료된다.

Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발 (Development of a complex failure prediction system using Hierarchical Attention Network)

  • 박영찬;안상준;김민태;김우주
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.127-148
    • /
    • 2020
  • 데이터 센터는 컴퓨터 시스템과 관련 구성요소를 수용하기 위한 물리적 환경시설로, 빅데이터, 인공지능 스마트 공장, 웨어러블, 스마트 홈 등 차세대 핵심 산업의 필수 기반기술이다. 특히, 클라우드 컴퓨팅의 성장으로 데이터 센터 인프라의 비례적 확장은 불가피하다. 이러한 데이터 센터 설비의 상태를 모니터링하는 것은 시스템을 유지, 관리하고 장애를 예방하기 위한 방법이다. 설비를 구성하는 일부 요소에 장애가 발생하는 경우 해당 장비뿐 아니라 연결된 다른 장비에도 영향을 미칠 수 있으며, 막대한 손해를 초래할 수 있다. 특히, IT 시설은 상호의존성에 의해 불규칙하고 원인을 알기 어렵다. 데이터 센터 내 장애를 예측하는 선행연구에서는, 장치들이 혼재된 상황임을 가정하지 않고 단일 서버를 단일 상태로 보고 장애를 예측했다. 이에 본 연구에서는, 서버 내부에서 발생하는 장애(Outage A)와 서버 외부에서 발생하는 장애(Outage B)로 데이터 센터 장애를 구분하고, 서버 내에서 발생하는 복합적인 장애 분석에 중점을 두었다. 서버 외부 장애는 전력, 냉각, 사용자 실수 등인데, 이와 같은 장애는 데이터 센터 설비 구축 초기 단계에서 예방이 가능했기 때문에 다양한 솔루션이 개발되고 있는 상황이다. 반면 서버 내 발생하는 장애는 원인 규명이 어려워 아직까지 적절한 예방이 이뤄지지 못하고 있다. 특히 서버 장애가 단일적으로 발생하지 않고, 다른 서버 장애의 원인이 되기도 하고, 다른 서버부터 장애의 원인이 되는 무언가를 받기도 하는 이유다. 즉, 기존 연구들은 서버들 간 영향을 주지 않는 단일 서버인 상태로 가정하고 장애를 분석했다면, 본 연구에서는 서버들 간 영향을 준다고 가정하고 장애 발생 상태를 분석했다. 데이터 센터 내 복합 장애 상황을 정의하기 위해, 데이터 센터 내 존재하는 각 장비별로 장애가 발생한 장애 이력 데이터를 활용했다. 본 연구에서 고려되는 장애는 Network Node Down, Server Down, Windows Activation Services Down, Database Management System Service Down으로 크게 4가지이다. 각 장비별로 발생되는 장애들을 시간 순으로 정렬하고, 특정 장비에서 장애가 발생하였을 때, 발생 시점으로부터 5분 내 특정 장비에서 장애가 발생하였다면 이를 동시에 장애가 발생하였다고 정의하였다. 이렇게 동시에 장애가 발생한 장비들에 대해서 Sequence를 구성한 후, 구성한 Sequence 내에서 동시에 자주 발생하는 장비 5개를 선정하였고, 선정된 장비들이 동시에 장애가 발생된 경우를 시각화를 통해 확인하였다. 장애 분석을 위해 수집된 서버 리소스 정보는 시계열 단위이며 흐름성을 가진다는 점에서 이전 상태를 통해 다음 상태를 예측할 수 있는 딥러닝 알고리즘인 LSTM(Long Short-term Memory)을 사용했다. 또한 단일 서버와 달리 복합장애는 서버별로 장애 발생에 끼치는 수준이 다르다는 점을 감안하여 Hierarchical Attention Network 딥러닝 모델 구조를 활용했다. 본 알고리즘은 장애에 끼치는 영향이 클 수록 해당 서버에 가중치를 주어 예측 정확도를 높이는 방법이다. 연구는 장애유형을 정의하고 분석 대상을 선정하는 것으로 시작하여, 첫 번째 실험에서는 동일한 수집 데이터에 대해 단일 서버 상태와 복합 서버 상태로 가정하고 비교분석하였다. 두 번째 실험은 서버의 임계치를 각각 최적화 하여 복합 서버 상태일 때의 예측 정확도를 향상시켰다. 단일 서버와 다중 서버로 각각 가정한 첫 번째 실험에서 단일 서버로 가정한 경우 실제 장애가 발생했음에도 불구하고 5개 서버 중 3개의 서버에서는 장애가 발생하지 않은것으로 예측했다. 그러나 다중 서버로 가정했을때에는 5개 서버 모두 장애가 발생한 것으로 예측했다. 실험 결과 서버 간 영향이 있을 것이라고 추측한 가설이 입증된 것이다. 연구결과 단일 서버로 가정했을 때 보다 다중 서버로 가정했을 때 예측 성능이 우수함을 확인했다. 특히 서버별 영향이 다를것으로 가정하고 Hierarchical Attention Network 알고리즘을 적용한 것이 분석 효과를 향상시키는 역할을 했다. 또한 각 서버마다 다른 임계치를 적용함으로써 예측 정확도를 향상시킬 수 있었다. 본 연구는 원인 규명이 어려운 장애를 과거 데이터를 통해 예측 가능하게 함을 보였고, 데이터 센터의 서버 내에서 발생하는 장애를 예측할 수 있는 모델을 제시했다. 본 연구결과를 활용하여 장애 발생을 사전에 방지할 수 있을 것으로 기대된다.