DOI QR코드

DOI QR Code

Modeling 2D residence time distributions of pollutants in natural rivers using RAMS+

RAMS+를 이용한 하천에서 오염물질의 2차원 체류시간 분포 모델링

  • Kim, Jun Song (Korea Research Institute for Human Settlements) ;
  • Seo, Il Won (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Shin, Jaehyun (Korea Institute of Civil Engineering and Building Technology) ;
  • Jung, Sung Hyun (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Yun, Se Hun (Department of Civil and Environmental Engineering, Seoul National University)
  • 김준성 (국토연구원) ;
  • 서일원 (서울대학교 건설환경공학부) ;
  • 신재현 (한국건설기술연구원) ;
  • 정성현 (서울대학교 건설환경공학부) ;
  • 윤세훈 (서울대학교 건설환경공학부)
  • Received : 2021.02.08
  • Accepted : 2021.05.24
  • Published : 2021.07.31

Abstract

With the recent industrial development, accidental pollution in riverine environments has frequently occurred. It is thus necessary to simulate pollutant transport and dispersion using water quality models for predicting pollutant residence times. In this study, we conducted a field experiment in a meandering reach of the Sum River, South Korea, to validate the field applicability and prediction accuracy of RAMS+ (River Analysis and Modeling System+), which is a two-dimensional (2D) stream flow/water quality analysis program. As a result of the simulation, the flow analysis model HDM-2Di and the water quality analysis model CTM-2D-TX accurately simulated the 2D flow characteristics, and transport and mixing behaviors of the pollutant tracer, respectively. In particular, CTM-2D-TX adequately reproduced the elongation of the pollutant cloud, caused by the storage effect associated with local low-velocity zones. Furthermore, the transport model effectively simulated the secondary flow-driven lateral mixing at the meander bend via 2D dispersion coefficients. We calculated the residence time for the critical concentration, and it was elucidated that the calculated residence times are spatially heterogeneous, even in the channel-width direction. The findings of this study suggest that the 2D water quality model could be the accidental pollution analysis tool more efficient and accurate than one-dimensional models, which cannot produce the 2D information such as the 2D residence time distribution.

최근 도시와 산업의 발달과 함께 하천, 호소 등 수환경에서의 수질 오염사고가 빈번하게 일어나고 있어 어류폐사, 취수중단, 친수활동 저해 등 심각한 수생태계 및 사회경제적 피해가 발생하고 있다. 따라서 이에 대한 대응책으로 수질모델링을 통한 오염물질의 이동 및 확산에 대한 사전 예측이 필요하다. 본 연구에서는 2차원 하천흐름/수질해석 프로그램인 RAMS+의 현장 적용성 및 예측 정확도를 검증하기 위해 만곡하천인 섬강에서 현장실험을 수행하였다. 모의결과 흐름해석모형 HDM-2Di와 수질해석모형 CTM-2D-TX는 현장실험에서 관측된 2차원 흐름 특성과 오염물질의 거동 및 혼합 양상을 정확하게 재현하였다. 특히 하천의 양안과 만곡부에서 국부적으로 발생하는 저유속 흐름에 의해 오염물질의 거동이 지체되는 저장대 효과를 정확하게 모의하였다. 나아가서 하천 만곡부에서 이차류가 야기하는 오염물질 3차원적 혼합 양상을 2차원 분산계수를 통해 효과적으로 재현하였다. 오염물질의 위험농도 체류시간은 취수중단 기간을 결정하는데 있어 매우 중요한 요소이다. 본 연구에서는 CTM-2D-TX 모의결과를 기반으로 오염물질 위험농도 체류시간을 계산하였고, 위험농도 체류시간의 공간적 분포가 하폭방향으로 큰 편차를 지니고 있음을 확인하였다. 이러한 오염물질의 2차원적 체류 특성은 1차원 수질모형을 통해서는 예측이 불가능하기 때문에 효율적이고 정확한 수질사고대응을 위해 2차원 수질모형의 활용이 필요함을 본 연구의 결과는 시사하고 있다.

Keywords

Acknowledgement

본 연구는 환경부 화학사고 대응 환경기술개발사업(2018001960001)의 연구비 지원에 의하여 수행되었습니다. 본 연구는 서울대학교 공학연구원과 건설환경종합연구소의 지원으로 이루어졌습니다. 서울대, 창원대, 인제대, 단국대 그리고 미국지질조사국(USGS) 연구팀의 현장실험 지원에 감사드립니다.

References

  1. Alavian, V. (1986). "Dispersion tensor in rotating flows." Journal of Hydraulic Engineering, Vol. 112, No. 8, pp. 771-777. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:8(771)
  2. Baek, K.O., and Seo, I.W. (2010), "Routing procedures for observed dispersion coefficients in two-dimensional river mixing." Advances in Water Resources, Vol. 33, No. 12, pp. 1551-1559. https://doi.org/10.1016/j.advwatres.2010.09.005
  3. Baek, K.O., Seo, I.W., and Jung, S.J. (2006), "Evaluation of dispersion coefficients in meandering channels from transient tracer tests." Journal of Hydraulic Engineering, Vol. 132, No. 10, pp. 1021-1032. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1021)
  4. Brooks, A.N., and Hughes, T.J.R. (1982). "Streamline upwind/PetrovGalerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations." Computer Methods in Applied Mechanics and Engineering, Vol. 32, No. 1-3, pp. 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  5. Choi, S.Y., Seo, I.W., and Kim, Y.O. (2020). "Parameter uncertainty estimation of transient storage model using bayesian inference with formal likelihood based on breakthrough curve segmentation." Environmental Modelling & Software, Vol. 123, p. 104558. https://doi.org/10.1016/j.envsoft.2019.104558
  6. Cox, B.A. (2003). "A review of currently available in-stream waterquality models and their applicability for simulating dissolved oxygen in lowland rivers." Science of the Total Environment, Vol. 314, pp. 335-377. https://doi.org/10.1016/S0048-9697(03)00063-9
  7. Hamrick, J.M., and Mills, W.B. (2000). "Analysis of water temperatures in Conowingo Pond as influenced by the Peach Bottom atomic power plant thermal discharge." Environmental Science & Policy, Vol. 3, pp. 197-209. https://doi.org/10.1016/S1462-9011(00)00053-8
  8. Jung, S.H., Seo, I.W., Kim, Y.D., and Park, I. (2019). "Feasibility of velocity-based method for transverse mixing coefficients in river mixing analysis". Journal of Hydraulic Engineering, Vol. 145, No. 11. p. 04019040. https://doi.org/10.1061/(asce)hy.1943-7900.0001638
  9. Kim, J.S., Baek, D., Seo, I.W., and Shin, J. (2019). "Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method." Geomorphology, Vol. 341, pp. 102-114. https://doi.org/10.1016/j.geomorph.2019.05.016
  10. Kim, J.S., Seo, I.W., and Baek, D. (2018a), "Modeling spatial variability of harmful algal bloom in regulated rivers using a depth-averaged 2D numerical model," Journal of Hydroenvironment Research, Vol. 20, pp. 63-76.
  11. Kim, J.S., Seo, I.W., Baek, D., and Kang, P.K. (2020). "Recirculating flow-induced anomalous transport in meandering open-channel flows." Advances in Water Resources, Vol. 141, p. 103603. https://doi.org/10.1016/j.advwatres.2020.103603
  12. Kim, J.S., Seo, I.W., Lyu, S., and Kwak, S. (2018b). "Modeling water temperature effect on diatom (Stephanodiscus hantzschii) prediction in Eutropic Rivers using a 2D contaminant transport model," Journal of Hydro-environment Research, Vol. 19, pp. 41-55.
  13. Kim, S.E., Lee, S., Kim, D., and Song, C.G. (2018c). "Stormwater inundation analysis in small and medium cities for the climate change using EPA-SWMM and HDM-2D." Journal of Coastal Research, No. 85, pp. 991-995. https://doi.org/10.2112/si85-199.1
  14. Lee, M.E., and Seo, I.W. (2007). "Analysis of pollutant transport in the Han River with tidal current using a 2D finite element model," Journal of Hydro-environment Research, Vol. 1, No. 1, pp. 30-42.
  15. Lee, M.E., and Seo, I.W. (2010), "2D finite element pollutant transport model for accidental mass release in Rivers," KSCE Journal of Civil Engineering, Vol. 14, No. 1, pp. 77-86. https://doi.org/10.1007/s12205-010-0077-9
  16. Lee, M.E., and Seo, I.W. (2013), "Spatially variable dispersion coefficients in meandering channels," Journal of Hydraulic Engineering, Vol. 139, No. 2, pp. 141-153. https://doi.org/10.1061/(asce)hy.1943-7900.0000669
  17. Mun, H.S., Jang, J.H., Ryu, I.G., and Kim, J.Y. (2012). "Development of web based realtime water pollution accident response management system in rivers." Journal of Korean Society of Hazard Mitigation, Vol. 12, No. 2, pp. 145-150. https://doi.org/10.9798/KOSHAM.2012.12.2.145
  18. Nordin Jr, C.F., and Troutman, B.M. (1980). "Longitudinal dispersion in rivers: The persistence of skewness in observed data." Water Resources Research, Vo. 16, No. 1, pp. 123-128. https://doi.org/10.1029/WR016i001p00123
  19. Park, I., and Seo, I.W. (2018). "Modeling non-Fickian pollutant mixing in open channel flows using two-dimensional particle dispersion model." Advances in Water Resources, Vol. 111, pp. 105-120. https://doi.org/10.1016/j.advwatres.2017.10.035
  20. Park, I., and Song, C.G. (2018). "Analysis of two-dimensional flow and pollutant transport induced by tidal currents in the Han River." Journal of Hydroinformatics, Vol. 20, No. 3, pp. 551-563. https://doi.org/10.2166/hydro.2017.118
  21. Runkel, R.L. (1998). One-dimensional transport with inflow and storage (OTIS): A solute transport model for streams and rivers. US Department of the Interior, US Geological Survey. Vol. 98, No. 4018, U.S.
  22. Rutherford, J.C. (1994), River Mixing, John Wiley, New York, U.S.
  23. Samuels, W.B., Amstutz, D.E., Bahadur, R., and Ziemniak, C. (2013). "Development of a global oil spill modeling system." Earth Science Research, Vol. 2, No. 2, p. 52.
  24. Seo, I.W., and Song, C.G. (2010), "Specification of wall boundary conditions and transverse velocity profile conditions in finite element modeling," Journal of Hydrodynamics, Vol. 22, No. 5, pp. 633-638. https://doi.org/10.3969/j.issn.1000-4874.2007.05.014
  25. Seo, I.W., and Song, C.G. (2012), "Numerical simulation of laminar flow past a circular cylinder with slip conditions," International Journal for Numerical Methods in Fluids, Vol. 68, No. 12, pp. 1538-1560. https://doi.org/10.1002/fld.2542
  26. Seo, I.W., Choi, H.J., Kim, Y.D., and Han, E.J. (2016), "Analysis of two-dimensional mixing in natural streams based on transient tracer tests." Journal of Hydraulic Engineering, Vol. 142, No. 8, p. 04016020. https://doi.org/10.1061/(asce)hy.1943-7900.0001118
  27. Seo, I.W., Lee, M.E., and Baek, K.O. (2008), "2D modeling of heterogeneous dispersion in meandering channels," Journal of Hydraulic Engineering, Vol. 134, No. 2, pp. 196-204. https://doi.org/10.1061/(asce)0733-9429(2008)134:2(196)
  28. Song, C.G., Ku, T.G., Kim, Y.D., and Park, Y.S. (2017). "Floodplain stability indices for sustainable waterfront development by spatial identification of erosion and deposition." Sustainability, Vol. 9, No. 5, p. 735. https://doi.org/10.3390/su9050735
  29. Song, C.G., Seo, I.W., and Kim, Y.D. (2012), "Analysis of secondary current effect in the modeling of shallow flow in open channels," Advances in Water Resources, Vol. 41, pp. 29-48. https://doi.org/10.1016/j.advwatres.2012.02.003
  30. Van Mazijk, A. (2002). "Modelling the effects of groyne fields on the transport of dissolved matter within the Rhine Alarm-Model." Journal of Hydrology, Vol. 264, No. 1-4, pp. 213-229. https://doi.org/10.1016/S0022-1694(02)00077-X
  31. Yotsukura, N., and Sayre, W.W. (1976). "Transverse mixing in natural channels." Water Resources Research, Vol. 12, No. 4, pp. 695-704. https://doi.org/10.1029/WR012i004p00695