• Title/Summary/Keyword: Industrial Carrier

Search Result 310, Processing Time 0.027 seconds

Minimum Weight Design for Web Frames of Cargo Tanks in the LPG Carrier (LPG 운반선 화물창의 웨브 프레임 최소중량설계)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.103-108
    • /
    • 2020
  • Generally, the cargo tank of LPG carriers corresponds to an independent tank Type A defined by the International Maritime Organization (IMO). The outside of the tank is insulated by polyurethane foam, and the tank is made of expensive low temperature steel that can withstand temperatures as low as -50℃. The cargo tank is composed of outer shell plates, bulkheads, stiffeners, web frames, and stringers. Among them, the outer shell plates, bulkheads, and stiffeners can be designed without structural analysis by the Classification Rules and are constructed easily through optimal design. On the other hand, optimal design, including numerous structural analysis, is not performed because web frames and stringers should be designed and approved through structural analysis. Only adequate design, which determines the design dimensions through several dozen structural analysis, is performed. In this study, for finite element analysis, eight loading conditions were applied, and the deformation of the entire ship for each loading condition was considered. The minimum weight design was performed for the web frames of cargo tanks in the 82,000 ㎥ LNG carrier through the gradient-based optimization technique, and the weight was reduced by approximately 108 tons per ship.

A Study on Loading Method of Large Scaffolding Module for LNG Carriers Using TRIZ (TRIZ를 이용한 LNG 운반선 대형 비계 모듈의 탑재 방안 연구)

  • Park, Myeong-Chul;Shin, Sang-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.94-100
    • /
    • 2021
  • To improve the productivity of cargo containment construction for a membrane LNG carrier, it is important to shorten the installation period and process of the scaffolding system, which is a construction workbench of a cargo containment for a membrane LNG carrier. As an effective method, opinions are being gathered to enlarge the lifting unit from the existing two stages to eight stages. On the other hand, the stresses around the pin and hole will increase significantly because of the increase in lifting load according to the large size of the module. The purpose of this study was to establish a new large module-lifting plan by introducing TRIZ to solve these problems. This study adopted a method to utilize 40 inventive principles, which is one of the various problem-solving tools of TRIZ. First, technical contradictions were derived, the engineering parameters were selected. Second, efficient inventive principles were selected to overcome the technical contradictions using a contradiction matrix. Finally, the general and specific solutions were derived through the selected inventive principle, and structural analysis confirmed that the stress generated in the structure was low. The utility of TRIZ was confirmed by the successful lifting of large modules using the established lifting method.

Title of Article: Current status of viral disease spread in Korean horn beetle, Allomyrina dichotoma (Coleoptera: Scarabeidae)

  • Lee, Seokhyun;Kim, Hong-Geun;Park, Kwan-ho;Nam, Sung-hee;Kwak, Kyu-won;Choi, Ji-young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.2
    • /
    • pp.70-74
    • /
    • 2015
  • The current market size of insect industry in Korea is estimated at 300 million dollars and more than 500 local farms are related to many insect industry. One of the strong candidates for insect industry is Korean horn beetle, Allomyrina dichotoma. Early this year, we reported a viral disease extremely fatal to A. dichotoma larvae. While we were proceeding a nationwide investigation of this disease, it was informed that similar disease symptom has been occurred occasionally during past over 10 years. The symptom can be easily confused with early stage of bacterial infection or physiological damage such as low temperature and high humidity. A peroral infection with the purified virus to healthy larvae produced a result that only 21% of larvae survived and became pupae. Although some of the survived adult beetle was deformational, many of them had no abnormal appearance and even succeeded in mating. Later, these beetles were examined if they were carrying the virus, and all except one were confirmed as live virus carrier. This implies that these beetles may fly out and spread the disease to the nature. We found the evidence for this possibility by collecting a few wild A. dichotoma larvae which were virus infected, near two local farms rearing A. dichotoma larvae. So far, transovarial transmission of this virus to the eggs, or horizontal transmission to other commercially reared insects is not known yet.

Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand (국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안)

  • Lim, Mee-Sook;Bang, Jin-Hwan;Oh, Jeon-Keun;Yoon, Young-Seek
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.

Behavior of Global Bending Distortion of Hatch-cover in Container Carrier during Fabrication Process (컨테이너 운반선 해치-커버 제작시 전 굽힘 변형 거동에 관한 연구)

  • Lee, Dong-Ju;Kim, Gyung-Gyu;Shin, Sang-Beom
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.41-48
    • /
    • 2010
  • The purpose of this study is to establish the control method of the global bending distortion caused by fabrication process of hatch-cover in a container ship. In order to do it, the transitional behavior of global bending distortion in the deck of hatch-cover during fabrication process was measured by 3-dimensional measuring instrument. From the results, the principal factor controlling the global bending distortion was identified as the bending moment associated with the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the change of the centroid axis of hatch-cover in each fabrication process. Therefore, in this study, with the predictive equations of the longitudinal shrinkage force and transverse shrinkage caused by welding and flame heating and the simplified thermo elastic method, the predictive method for the global bending distortion was established and verified by comparing with the measured result. Based on the results, the amount of reverse bending distortion of main stiffeners was determined to prevent the global bending distortion of hatch-cover.

Analysis of Gas Hydrocarbons by Gas-Liquid Partition Chromatography (Gas Chromatography 에 依한 까스炭化水素의 分析)

  • Chwa-Kyung Sung;Icksam Noh;Jung Yup Kim
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.128-132
    • /
    • 1963
  • A study has been made on the applicability of gas-liquid partition chromatography to the qualitative and quantitative analysis of complex mixture of gaseous hydrocarbons. While phthalate columns are widely used for this $purpose^9$, they separates neither saturated hydrocarbons from the unsaturated nor n-butane from isobutene or butene-1, therefore combined columns such as phthalate and dimethylsulfolane have been used for the perfect separation of gaseous hydrocarbons. It is shown by this study, however, that hydrocarbons having $C_1$ through $C_4$ can be separated with a 2-meters tetraethyleneglycol dimethylether column except ethane from ethylene, and trans-from cis-2-butene especially operated at $15^{\circ}C$$ using helium as the carrier gas. The column effluents were in order of methane, (ethane, ethylene), propane, propylene, isobutane, n-butane, isobutylene, butene-1, (trans-& cis-2-butene, isopentane), (butadiene-1, 3, n-pentane). Two kinds of liquified petroleum gases in market are analysed qualitatively and quantitatively. The results indicate that use of this 2-meters TEGDE column permits the separation and identification of all the commonly encountered aliphatic gaseous hydrocarbons.

  • PDF

Characterization of Combined Micro- and Nano-structure Silicon Solar Cells using a POCl3 Doping Process

  • Jeong, Chaehwan;Kim, Changheon;Lee, Jonghwan;Yi, Junsin;Lim, Sangwoo;Lee, Suk-Ho
    • Current Photovoltaic Research
    • /
    • v.1 no.1
    • /
    • pp.69-72
    • /
    • 2013
  • Combined nano- and micro-wires (CNMWs) Si arrays were prepared using PR patterning and silver-assisted electroless etching. A $POCl_3$ doping process was applied to the fabrication of CNMWs solar cells. KOH solution was used to remove bundles in CNMWs and the etching time was varied from 30 to 240 s. The lowest reflectance of 3.83% was obtained at KOH etching time of 30 s, but the highest carrier lifetime of $354{\mu}s$ was observed after the doping process at 60 s. At the same etching time, a $V_{oc}$ of 574 mV, $J_{sc}$ of $28.41mA/cm^2$, FF of 74.4%, and Eff. of 12.2% were achieved in the CNMWs solar cell. CNMWs solar cells have potential for higher efficiency by improving the post-process and surface-rear side structure.

Research on Utilization of Satellite Communication in 4th Industrial Revolution: Case Study of Australian Policy (4차 산업혁명에서의 위성통신의 활용 방안 연구 호주 정책 사례를 중심으로)

  • Park, Sejin;Park, Jaewoo
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.88-93
    • /
    • 2017
  • Policy maker inevitably faces two restraints once they attempt to accomplish $4^{th}$ Industrial Revolution through development of Industrial Internet of Things(i.e. IIoT). One is to construct physical network by substituting old equipment and infrastructure into smart equipment and the other is to connect the physical network into national telecommunications infrastructure. Australia, as she proceeds National Broadband Network programme, has assembled all medium of telecommunications to provide every Australian premises regardless to its physical location by creating wholes-sale only carrier, NBN co. At the same time, Australian government also provides its own IIoT policy; Co-development and New-Development projects. Meanwhile, NBN co. has launched its own two communication satellites in 2015 and 2016 to replace the old satellite communication services depended on the other companies' satellites. This article, in the end, analyses the role of satellite communication in $4^{th}$ industrial revolution with case study on Australian policy.

Fate and Activity of Microorganism introduced into the Soil (토양에 투입된 미생물의 거동 및 활성)

  • Chung, Jae-Chun;Ju, Seul;Lee, Jae-Woong;Lee, Jung-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.100-116
    • /
    • 2002
  • There are several purpose to introduce microorganism into the Soil. The major purpose is to promote plant growth and inhibit plant pathogens. The model example is to put in nitrogen fixing symbiotic bacteria, Pythium and Rhizobium. In order to achieve the intended goal, the introduced microorganism should survive and colonize with sufficient density. The survival of introduced microorganism depend upon biotic and abiotic factors. Predation and competition are important among biotic factor. Water tension, organic carbon, inorganic nutrients(N, P), pH are important factor among abiootic factor. Soil texture and distribution of soil pore are also important in the survival and colonization of introduced microorganism. Selection by soil ecosystem for inoculant is a crucial factor for colonization. Good example are control of autochtonous microorganism and the introduction of surfactant biodegrading Pseudomonas. Sometimes, carriers such as peat and montmorillonite can be added to help colonization. Carriers can protect introduced microorganism by supplying protective microhabitat. Organic polymer is also used as a carrier to immobilize bacteria or industrial enzymes. Examples of these carrier are calcium alginate, agarose and k-carrageenan. The function of these carrier is to provide microhabitat and help colonization for introduced microorganism.

  • PDF

Development of Super-capacitor Battery Charger System based on Photovoltaic Module for Agricultural Electric Carriers

  • Kang, Eonuck;Pratama, Pandu Sandi;Byun, Jaeyoung;Supeno, Destiani;Chung, Sungwon;Choi, Wonsik
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.94-102
    • /
    • 2018
  • Purpose: In this study, a maintenance free super-capacitor battery charging system based on the photovoltaic module, to be used in agricultural electric carriers, was developed and its charging characteristics were studied in detail. Methods: At first, the electric carrier system configuration is introduced and the electric control components are presented. The super-capacitor batteries and photovoltaic module used in the experiment are specified. Next, the developed charging system consisting of a constant current / constant voltage Buck converter as the charging device and a super-capacitor cell as a balancing device are initiated. The proposed circuit design, a developed PCB layout of each device and a proportional control to check the current and voltage during the charging process are outlined. An experiment was carried out using a developed prototype to clarify the effectiveness of the proposed system. A power analyzer was used to measure the current and voltage during charging to evaluate the efficiency of the energy storage device. Finally, the conclusions of this research are presented. Results: The experimental results show that the proposed system successfully controls the charging current and balances the battery voltage. The maximum voltage of the super-capacitor battery obtained by using the proposed battery charger is 16.2 V, and the maximum charging current is 20 A. It was found that the charging time was less than an hour through the duty ratio of 95% or more. Conclusions: The developed battery charging system was successfully implemented on the agricultural electric carriers.