• Title/Summary/Keyword: Inductive power transfer system

Search Result 113, Processing Time 0.037 seconds

A Load Identification Method for ICPT System Utilizing Harmonics

  • Xia, Chen-Yang;Zhu, Wen-Ting;Ma, Nian;Jia, Ren-Hai;Yu, Qiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2178-2186
    • /
    • 2018
  • Online identification of load parameters is the premise of establishing a stable and highly-efficient ICPT (Inductive Coupled Power Transfer) system. However, compared with pure resistive load, precise identification of composite load, such as resistor-inductance load and resistance-capacitance load, is more difficult. This paper proposes a method for detecting the composite load parameters of ICPT system utilizing harmonics. In this system, the fundamental and harmonic wave channel are connected to the high frequency inverter jointly. The load parameter values can be obtained by setting the load equation based on the induced voltage of secondary-side network, the fundamental wave current, as well as the third harmonic current effective value received by the secondary-side current via Fourier decomposition. This method can achieve precise identification of all kinds of load types without interfering the normal energy transmission and it can not only increase the output power, but also obtain higher efficiency compared with the fundamental wave channel alone. The experimental results with the full-bridge LCCL-S type voltage-fed ICPT system have shown that this method is accurate and reliable.

Loss and Efficiency Dependence of a 6.78 MHz, 100 W, 30 cm Distance Wireless Power Transfer System on Cable Types (6.78 MHz, 100 W, 30 cm 거리 무선 전력 전송 시스템의 전선별 손실 및 효율 비교)

  • Lee, Seung-Hwan;Lee, Byung-Song;Jung, Shin-Myung;Park, Chan-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1651-1657
    • /
    • 2015
  • In MHz operating wireless power transfer systems, skin- and proximity-effect losses in the transmitter and the receiver coils dominate the coil-to-coil efficiency of the system. A Litz-wire was regarded as a common solution for minimizing such Ohmic losses in high frequencies. In this paper, equivalent series resistances of 12 different cables including Litz-wire and copper tubing have been calculated and measured for a 6.78 MHz, 100W, 30 cm wireless power transfer system. It has been shown that the copper tubing has lower resistances compared to the Litz-wire in that frequency and a wireless power transfer system with the copper tubing was able to achieve much higher efficiency than a system using the Litz-wire. Calculations of the resistances and efficiencies were accomplished with analytical equations and those calculations were evaluated by experimental results.

Design and Control of Adjustable Turn-ratio LLC Converter for High-efficiency Operation of Wired/Wireless Integrated Charging System for Electric Vehicles (전기자동차용 유·무선 통합 충전 시스템의 고효율 동작을 위한 권선비 가변형 LLC 컨버터 설계 및 제어 방안)

  • Jo, Hyeon-Woo;Sim, Dong-Hyeon;Lee, Ju-A;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 2022
  • This paper proposes a method to adjust the turn ratio of a transformer for the high-efficiency operation of an LLC converter with a wide input range in a wired/wireless integrated charging system for electric vehicles. The characteristics of the inductive power transfer converter in the integrated charging system are analyzed to design the LLC converter, and the DC-link voltage range is derived. The aspect of voltage gain following each parameter of the LLC converter is analyzed, and the resonant network and transformer are designed. Based on the designed parameters, the feasibility of the design and control method is verified by implementing the operation of the LLC converter according to the DC-link and battery voltages.

Design of Two Stage Inductive Power Transfer System for Electric Vehicle Chargers (전기자동차 충전기용 2 stage IPT 시스템 설계)

  • Ann, Sangjoon;Kim, Minjung;Kim, Min-Kook;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.112-113
    • /
    • 2017
  • 본 논문에서는 전기자동차용 배터리 충전기의 특징과 설계조건을 반영한 2 stage 자기유도방식 무선전력전송 (inductive power transfer, IPT) 시스템의 설계 방법을 제안한다. 시스템 설계 시 고려사항은 송신측 DC link 전압 범위와 수신측 듀티가변 범위, 배터리 전압 범위 등이 있다. 이와 같은 고려사항을 반영하여 2 stage IPT 시스템의 입 출력전압 범위를 선정하고 전압 전류 스트레스 분석을 통해 공진네트워크를 설계한다.

  • PDF

Omnidirectional Resonator in X-Y Plane Using a Crisscross Structure for Wireless Power Transfer

  • Kim, Donggeon;Seo, Chulhun
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.194-198
    • /
    • 2015
  • Magnetic resonant coupling is more efficient than inductive coupling for transferring power wirelessly over a distance. However, a conventional resonant wireless power transfer (WPT) system requires a transmitter and receiver pair in exactly coaxial positions. We propose a resonator that can serve as an omnidirectional WPT system. A magnetic field will be generated by the current flowed through the transmitter. This magnetic field radiates omnidirectionally in the x-y plane because of the crisscross structure characteristic of the transmitter. The proposed resonator is demonstrated by using a single port. To check the received S21 and transfer efficiency, we moved the receiver around the transmitter at different distances (50-350 mm). As a result, the transmission efficiency is found to be 48%-54% at 200 mm.

Protection Distance Calculation Between Inductive Systems and Radiocommunication Services Using Frequency Below 30 MHz (30 MHz 이하에서 무선 서비스와 유도성 시스템 간의 보호 거리 산출)

  • Shim, Yong-Sup;Lee, Il-Kyoo;Park, Seung-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.12
    • /
    • pp.1211-1221
    • /
    • 2012
  • This paper describes separation distance to protect radiocommunication services from the interference of inductive systems using frequencies below 30 MHz for the co-existence between radiocommunication services and inductive systems. For the analysis, the interference scenario model is proposed between inductive system and radiocommunication services. Then the calculation method of protection distance is suggested by comparing the radiation power of inductive system with the allowable interference level of victim services, radiocommunication services, according to the applied propagation model. Also, the protection distance for protecting radiocommunication services in the 30 MHz below is calculated through the interference analysis from RFID(Radio Frequency IDentification) and PDP(Plasma Display Panel) TV based on the suggested method. The proposed calculation method was adopted as ITU-R recommendation in related with resolution 63 at ITU-R SG(Study Group) 1 meeting in June, 2012. It will be available to use for the protection of radiocommunication services from the interference of wireless power transfer system and power line telecommunication system.

Cascaded Multi-Level Inverter Based IPT Systems for High Power Applications

  • Li, Yong;Mai, Ruikun;Yang, Mingkai;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1508-1516
    • /
    • 2015
  • A single phase H-bridge inverter is employed in conventional Inductive Power Transfer (IPT) systems as the primary side power supply. These systems may not be suitable for some high power applications, due to the constraints of the power electronic devices and the cost. A high-frequency cascaded multi-level inverter employed in IPT systems, which is suitable for high power applications, is presented in this paper. The Phase Shift Pulse Width Modulation (PS-PWM) method is proposed to realize power regulation and selective harmonic elimination. Explicit solutions against phase shift angle and pulse width are given according to the constraints of the selective harmonic elimination equation and the required voltage to avoid solving non-linear transcendental equations. The validity of the proposed control approach is verified by the experimental results obtained with a 2kW prototype system. This approach is expected to be useful for high power IPT applications, and the output power of each H-bridge unit is identical by the proposed approach.

Characteristic Analysis of The Efficiency of the Power Transfer of the IPT Using LLC Resonant Inverter (LLC 공진형 인버터를 이용한 IPT 전력전송 효율 특성 분석)

  • Kim, Ki-Byoung;Lee, Hyung-Woo;Park, Chan-Bae;Lee, Byung-Song;Kim, Nam-Po
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.401-408
    • /
    • 2011
  • Nowadays, the development of sustainable transportation has been researched all over the world and Korea Railroad Research Institute (KRRI) is conducting a study in order to apply the sustainable Contactless Inductive Power Supply Technology to the electric railway system. But, inherent large flux leakage has limited the high power transmission because the gap of the Inductive Power Transformer(IPT) is much larger than one of the conventional transformers. In this study, a method to compensate the leakage flux and improve the power transmission by using LLC resonant inverter was proposed, incorporated in a built system, and verified by experimental work.

  • PDF

Technological and Theoretical Relationship between Wireless Power Transfer Technologies (무선전력전송기술의 기술적 이론적 상호 관계)

  • Lee, Dong-Su;Lim, Dong-Nam;Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.245-249
    • /
    • 2014
  • Wireless power transfer (WPT) system is very attractive because it removes power cables from home appliances, office equipments and battery chargers for electric vehicles. In this paper, non-radiative WPT systems studied recently are claimed to be technologically or theoretically identical in operation irrespective of the number of coils. Especially, 2-coil and 3-coil systems are compared in detail. It is also shown that multiplicity of coils does not increase power transfer capability.