• Title/Summary/Keyword: Induction Motor Drives

Search Result 313, Processing Time 0.023 seconds

A Sensor Fault Detection Scheme for DTC based Induction Motor Drives (직접토크제어 유도전동기 구동장치를 위한 센서 고장검출기법)

  • Ryu, Ji-Su;Lee, Kee-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1165-1168
    • /
    • 2001
  • The effect of sensor faults in DTC based induction motor drives is analyzed and a fault detection problem is treated. An adaptive gain scheduling observer is proposed for the design of DTC controller and a fault detection system. The observer provides not only the estimate of stator flux, a key variable in DTC system, but also the estimates of stator current, rotor speed that are useful for fault detection purpose. Simulations for various type of sensor faults are performed to evaluate the performance of the overall control system and the proposed sensor fault detection scheme.

  • PDF

A STUDY ON THE VECTOR CONTROL OF INDUCTION MOTOR BASED ON SPEED ESTIMATION (유도전동기의 속도 추정 벡터제어에 관한 연구)

  • Sul, Seung-Ki;Kwon, Bong-Hyun;Kang, Jun-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.264-267
    • /
    • 1989
  • In the vector controlled induction machine drives, mechanical speed sensors such as shaft encoder and resolver have been used. However, the mechanical speed sensors present some problems and restrict the wide applications of high performance AC drives. This paper describes the vector control strategy with the speed estimation algorithm in which motor slip frequency is calculated. Also, the angle deviation of the rotor flux vector is calculated and instaneously compensated to keep the q axis flux zero in the rotationary reference frame.

  • PDF

Variable Speed Drives of Induction Motor for Traction Application with Modified Sliding Mode Control

  • Ryoo, Hong-Je;Kim, Jong-Soo;Rim, Geun-Hie;Dragos Ovidiu Kisck;Won, Chung-Yuen
    • Journal of KIEE
    • /
    • v.11 no.1
    • /
    • pp.62-68
    • /
    • 2001
  • In this paper it is proposed an advanced modified sliding mode control of a rotor field oriented control of induction motor. The application of this unconventional control has very good results, such as disturbance rejection and nice dynamic properties. Stability can be guaranteed even in the worst situation. A conventional "sliding mode" controller is characterised by fast switching control signal, which causes the chattering of the drive system. To overcome this problem, a modified law is used, by introducing a hysteresis band and a continuous control, which modifies the conventional law. The control is accomplished with dual TMS320C44 floating-point digital signal processor. The validity of the proposed method was verified by experiment on the propulsion system simulator, used for the development of Korean High-Speed Railway Train(KHSRT).in(KHSRT).

  • PDF

Robust Sensorless Control for Induction Motor Drives Fed by a Matrix Converter with Model Reference Adaptive Control (매트릭스 컨버터를 이용한 유도전동기 구동장치의 기준모델 적응제어기법 기반의 강인한 센서리스 제어)

  • Sim, Gyung-Hun;Huh, Sung-Hoi;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.610-616
    • /
    • 2008
  • This paper presents a new robust sensorless control system for high performance induction motor drives fed by a matrix converter with variable structure. The lumped disturbances such as parameter variation and load disturbance of the system are estimated by a variable structure approach based on model reference adaptive scheme. A Reduced Order Extended Luenberger Observer(ROELO) is also employed to bring better responses at the low speed operation. Experimental results are shown to illustrate the performance of the proposed system.

A Study on the Neural Adaptive Observer for I.M. Drives (유도전동기 구동을 위한 신경망 적응 관측기에 대한 연구)

  • Jeon, Hi-Jong;Kim, Beung-Jin;Son, Jin-Geun;Jeong, Eull-Gi;Kim, Jin-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.216-218
    • /
    • 1995
  • In this article a neural network adaptive observer is proposed and applied to the case of induction motor control. The high performance vector control drives require exact knowledge of rotor flux. Because rotor time constant is needed to observe rotor flux, the accurate estimation of rotor time constant is important. For these problems, proposed observer which comprises neural network flux observer and neural network torque observer is trained to learn the flux dynamics and torque dynamics and subject to further on-line training by means of a backpropagation algorithem. Therefore it has been shown that the robust control of induction motor neglects the rotor time constant variations.

  • PDF

A Study on the Cycloconverter with a LC resonant Circuit for a Induction Moter Drive (LC 공진 회로를 이용한 유도전동기 구동용 사이크로콘버터에 관한 연구)

  • 김영석;조규민
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.47-52
    • /
    • 1990
  • This paper presents a cyclocoverter with a LC resonant circuit for a induction motor dr-ive. The cycloconverter can provide variab-le voltage and frequency three phase output while keeping the input displacement factor at 1.0. The input current wave forms are sinusoidal, and the wide output frequency ran-ge is appropriate for variable speed AC motor drives.

  • PDF

A Study on Induction Motor Drives by the Direct Torque Control Technique (직접토크 제어방식을 이용한 유도전동기 구동에 관한 연구)

  • 안용상;김연충;이정호;원충연;송호범
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.394-398
    • /
    • 1999
  • Direct Torque Control method for an Induction Motor is presented which is quite different from field-oriented control. It carries out a precise and quick control of the stator flux and electromagnetic torque of an IM without calling for coordinate transformation, speed measurement, and stator current control. In principle, moreover, DTC operation requires only the knowledge of the stator resistance.

  • PDF

Direct Torque Control of Induction Motor Fed by a Three Level Inverter (3 레벨 인버터를 이용한 유도 전동기의 직접 토크 제어)

  • 박영민;이세현;윤재학;박영우;김남해;이교범;송중호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.386-389
    • /
    • 1999
  • In this paper a Direct Torque Control(DTC) scheme for PWM three level inverter-fed induction motor drives, is presented and discussed. In orde to deal with DTC scheme applied three level inverter, the selection of voltage vector is proposed to minimize switching frequency and torque ripple. The simulation results shows a validity of the control scheme.

  • PDF

Improving on Performance of Induction Motor by 3 Phase Dual Inverter Drives (3상 Dual Inverter의 구동에 의한 유도전동기의 운전 특성 개선)

  • Hyun, Dong-Seok;Cho, Sun-Bong;Sim, Jun-Seok;Baik, Kwang-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.273-277
    • /
    • 1989
  • This paper concerns to drive Induction Motor with open delta winding, and improve general performance, speed response, operation region and flexibility of control, etc. And a control algorithm, which reduces large zero-phase current at this operation, is presented.

  • PDF

SENSORLESS SPEED CONTROL OF INDUCTION MOTOR WITH SPEED ESTIMATOR (자속추정기에 의한 유도전동기 센서리스 속도제어)

  • 김성환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.4
    • /
    • pp.432-439
    • /
    • 1999
  • Several methods of induction motor drives which used speed estimators instead of shaft encoders have been reported. However those speed sensorless systems with estimators employing stator voltates and currents usually deteriorates as the speed gets lower because it is difficult to calculate the accurate rotor flux under the influence of DC-offset and saturation of integrators. In this paper to calculate rotor flux at low speed the new rotor flux estimator which replaces integra-tors with two lag circuits is proposed. Simulation and experiment results confirm the validity of this control scheme.

  • PDF