• Title/Summary/Keyword: Indoor radon gas

Search Result 48, Processing Time 0.019 seconds

The Correlation between Radon (Rn222) and Particulate Matters (PM10, PM2.5, PM1.0) in Subway Tunnel in Seoul.

  • Versoza, Michael;Park, Duckshin
    • Particle and aerosol research
    • /
    • v.13 no.2
    • /
    • pp.87-95
    • /
    • 2017
  • Radon ($Rn^{222}$) is a radioactive gas and is found at high concentrations underground. Investigations were done in many years specifically on public transportations such as in the subway stations, concourses and platforms for these are located underground areas. This study correlates the $Rn^{222}$ concentrations with the Particulate Matter (PM) concentration for the gas could be attached or trapped inside these particles. It was done on the opening subway tunnel of Miasageori Station going to Mia Station (Line 4) last August 2016. Based on the result, the $Rn^{222}$ were more influenced on the mass ratio (%) of PM present in the air instead of its mass concentration (${\mu}g/m^3$). As the $PM_{10}$ mass ratio increases ($42.32{\pm}1.03%$) during morning rush-hours, radon starts to increase up to $0.97{\pm}0.03pCi/L$. But during the afternoon $Rn^{222}$ concentrations decreased while the composition were stable at $22.96{\pm}3.0%$, $39.04{\pm}0.6%$ and $38.01{\pm}0.3%$ in $PM_1$, $PM_{2.5}$ and $PM_{10}$ respectively. It was then assumed that it could be the composition of the morning hours of the station were influencing the concentration of the radon.

Properties of Harmful Substances Absorption Eco-friendly Artificial Stone Containing Basalt Waste Rock (현무암 폐석을 첨가한 유해물질 흡착 친환경 인조석재의 특성)

  • Pyeon, Su-Jeong;Gwon, Oh-Han;Kim, Tae-Hyun;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, Both rapid economic growth and high-quality native finishing materials demand in buildings such as local infrastructure facilities and cultural facilities have increased along with local quarries. So, increasing local quarries and environmental pollution occurred in quarries get the eyes to damaged area of the surroundings. As an example, carcinogen such as solid formed to fixing asbestos and dust have damaged to local resident. Especially, Radon gas released from asbestos can exist everywhere on earth, released soil and rock as radioactive substances, can be caused lung cancer followed by a smoking. When pollution source to indoor air quality that lacking ventilation rate of the residential building moved in a cycle, human responses such as headache, dizziness, etc. get appear, so on it threatened resident's physical condition. Thus, we need to urgent attention to reduction harmful substance. In the case of radon gas of the pollution source to indoor air quality in housing, it has characteristic that keep on going through half-life released from source, we need to control radon gas source than source removal. We set on vermiculite addition ratio to 10% which has harmful substances adsorption performance, proceed experiment to basalt waste rock addition ratio 50, 60, 70, 80(%). The result of an experiment, based on 'KS F 4035, precast terrazzo', we can be obtainable in the best terrazzo at basalt waste rock addition ratio 70%.

Radon-222 Concentrations of Metropolitan Subway Stations and Soils in the Seoul (서울 지하철역(地下鐵驛) 승강장(昇降場) 및 토양내(土壤內) 유해(有害)라돈함량(含量) 연구(硏究))

  • Hong, Young-Kook;Kim, Sung-Oh;Kim, Tong-Kwon
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 1998
  • The radon (Rn-222) potential of metropolitan subway stations and soils in Seoul city were delineated using alpha-track filter and EDA-200 radon detectors, respectively. The uranium (U) and thorium (Th) contents were also determined using a Multi Channel Analyzer to identify the sources of radon gas. The average U concentrations in Seoul varies according to basement rock types. For example, there is $9.40{\pm}10.11ppm$ in the Precambrian metasedimentary rock (PM), $9.08{\pm}2.85ppm$ in the Jurassic Kwanaksan granite (JK) and $4.94{\pm}1.43ppm$ in the Jurassic Seoul granite (JS). Uranium contents in soil samples are $10.30{\pm}4.74ppm$ in JK, $10.10{\pm}7.43ppm$ in PM and $6.69{\pm}3.95ppm$ in JS and these closely reflect the content of uraniferous minerals. The levels of soil radon are $604{\pm}273pCi/L$ in JK, $502{\pm}275$ in JS and $262{\pm}211pCi/L$ in PM. The soil radon concentrations are shown to reflect soil permeability and porosity rather than their U contents. The mean indoor radon contents in subway stations are $1.50{\pm}0.62pCi/L$ on the 4th line, $1.41{\pm}0.95pCi/L$ on the 3rd line, $0.84{\pm}0.13pCi/L$ on the 1st line and $0.80{\pm}0.25pCi/L$ on the 2nd line. The subway stations located in the JK have the highest average radon concentration with $2.04{\pm}0.65pCi/L$, where levels of $1.57{\pm}0.81pCi/L$ occur in the JS and $0.80{\pm}0.23pCi/L$ in the PM. The highest radon levels of 4.1 pCi/L occur mainly in Keongbokkung station on the 3rd line and these exceed 4 pCi/L of the US EPA action level.

  • PDF

Modeling a Radon Environment System with Dose Sensitivity to the Controllable Parameters (라돈 환경계통의 제어 매개변수 모델링)

  • Zoo, Oon-Pyo;Kim, Kem-Joong;Chang, Si-Young
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.753-756
    • /
    • 1991
  • This paper aimed to analyse dose sensitivity to the controllable parameters of in-door radon $(^{222}Rn)$ and its decay products(Rn-D) by applying the input-output linear system theory. Physical behaviors of $^{222}Rn$ & Rn-D were analyzed in terms of $^{222}Rn$ gas generation, -migation and - infiltration to indoor environments, and the performance output-function(i.e. mean dose equivalent to Tracho-Bronchial(TB) lung region was assessed to the following ranges of the controllable parameters; a) the ventilation rate constant $({\lambda}_v)$ : $0{\sun}500[h^{-1}]$. b) the attachment rate constant$({\lambda}_a)$ : 0-500 $[h^{-1}]$. c) deposition rate constant $({\lambda}{_{d}^{u}})$: 0-50$[h^{-1}]$. A linear input-output model was reconstructed from the original models in literatures, as follows, which was modified into the matrices consisting of 111 nodal equations. a) indoor ${222}Rn$ & Rn-D Behaviour: jacobi- Porstendorfer- Bruno model. b) lung dosimerty : Jacobi-Eisfeld model. Some of the major findings, which identify the effectiveness of this model, were as follows. a) ${\lambda}_v$ is most effective, dominant controllable parameters in dose reduction, if mechanical ventilation is applied. b) ${\lambda}_v$, depending on the air particle-concentration, reduces the dose somewhat within ${\lambda}_v$<1 $h^{-1}R range. However, the dose increases conversely, ${\lambda}_v$>1 $h^{-1}R range range. c) ${\lambda}{_{d}^{4}}$ reduces the dose linearly as ${\lambda}_v$ dose. Such dose(z-axis) sentivities are shown with three-dimensional plots whoes x,y-axes are combined 2out the 3 parameter${\lambda}_v{\lambda}_s,\;{\lambda}_d^s$.

  • PDF

Evaluation of Indoor Radon Levels in a Hospital Underground Space and Internal Exposure (의료기관 지하시설의 라돈가스 측정과 내부피폭 조사)

  • Song, Jea-Ho;Jin, Gye-Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.5
    • /
    • pp.231-235
    • /
    • 2011
  • Radium is rock or soil of crust or uranium of building materials and thorium after radioactivity collapse process are created colorless and odorless inert gas that accrue well in sealed space like mine or basement. It inflow to lung circulate respiratory organ and caused lung cancer because of deposition of lung or bronchial tubes. Radium sheath of medical institution treat person's life is possible big danger to professional regarding radioactivity who has much amount exposed radioactivity and weaker immune patient. so we do this test. Using measuring instrument at test is real time radium measuring instrument, Professional Continuous Radon monitor, and measuring places are basement first floor and second floor of two hospitals and measure from 10 a.m to 3 p.m. Measurement result of Professional Continuous Radon monitor is minimum 14.8 Bq/$m^3$ to maximum 70.3 Bq/$m^3$ and show domestic baseline below 148 Bq/$m^3$, effective dose-rate is minimum 0.296 mSv to maximum 1.406 mSv that show 2.4 mSv, 10~58.3% level, exposed radiation amount from nature radiation one year.

Public Exposure to Natural Radiation and the Associated Increased Risk of Lung Cancer in the Betare-Oya Gold Mining Areas, Eastern Cameroon

  • Joseph Emmanuel Ndjana Nkoulou II;Louis Ngoa Engola;Guy Blanchard Dallou;Saidou;Daniel Bongue;Masahiro Hosoda;Moise Godefroy Kwato Njock;Shinji Tokonami
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.59-67
    • /
    • 2023
  • Background: This study aims to reevaluate natural radiation exposure, following up on our previous study conducted in 2019, and to assess the associated risk of lung cancer to the public residing in the gold mining areas of Betare-Oya, east Cameroon, and its vicinity. Materials and Methods: Gamma-ray spectra collected using a 7.62 cm×7.62 cm in NaI(Tl) scintillation spectrometer during a car-borne survey, in situ measurements and laboratory measurements performed in previous studies were used to determine the outdoor absorbed dose rate in air to evaluate the annual external dose inhaled by the public. For determining internal exposure, radon gas concentrations were measured and used to estimate the inhalation dose while considering the inhalation of radon and its decay products. Results and Discussion: The mean value of the laboratory-measured outdoor gamma dose rate was 47 nGy/hr, which agrees with our previous results (44 nGy/hr) recorded through direct measurements (in situ and car-borne survey). The resulting annual external dose (0.29±0.09 mSv/yr) obtained is similar to that of the previous study (0.33±0.03 mSv/yr). The total inhalation dose resulting from radon isotopes and their decay products ranged between 1.96 and 9.63 mSv/yr with an arithmetic mean of 3.95±1.65 mSv/yr. The resulting excess lung cancer risk was estimated; it ranged from 62 to 216 excess deaths per million persons per year (MPY), 81 to 243 excess deaths per MPY, or 135 excess deaths per MPY, based on whether risk factors reported by the U.S. Environmental Protection Agency, United Nations Scientific Committee on the effects of Atomic Radiation, or International Commission on Radiological Protection were used, respectively. These values are more than double the world average values reported by the same agencies. Conclusion: There is an elevated level of risk of lung cancer from indoor radon in locations close to the Betare-Oya gold mining region in east Cameroon. Therefore, educating the public on the harmful effects of radon exposure and considering some remedial actions for protection against radon and its progenies is necessary.

The Concentration of Indoor Air Quality and Correlations of Materials at Multiple-use Facilities in Gwangju (광주지역 다중이용시설에서 실내공기질 농도와 상관성 분석)

  • Lee, Dae-Haeng;Lee, Se-Haeng;Bae, Seok-Jin;Kim, Nan-Hee;Park, Kang-Soo;Kim, Do-Sool;Paik, Ke-Jin;Moon, Yong-Woon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1001-1010
    • /
    • 2010
  • The purpose of this study is to investigate the concentration levels of particle materials ($PM_{10}$, asbestos), gas materials ($CO_2$, CO, $NO_2$, HCHO, Rn, VOCs) and total suspended colony (TSC), and the correlations among these materials in indoor air quality of 54 multiple-use facilities and 15 public-use facilities of Gwangju. The highest mean concentration of $PM_{10}$ was $69.2\;{\mu}g/m^3$ at indoor parking place, followed by childcare facilities, large commercial building and subway station building. The highest mean concentration of CO was 2.7 ppm at indoor parking place and that of $CO_2$ was 604.1 ppm at medical service facilities. The highest mean concentration of $NO_2$ was 0.036 ppm at indoor parking place. The geomean concentration of HCHO was $3.6\;{\mu}g/m^3$ in all facilities and the highest was $631.8\;{\mu}g/m^3$ at art gallery. The geomean concentration of VOCs (5 species) was $24.14\;{\mu}g/m^3$ in all facilities and toluene was the highest material of $15.30\;{\mu}g/m^3$, followed by xylene, ethylbenzene, benzene and styrene. The highest mean concentration of TSC was $625.3\;CFU/m^3$ at jjimjilbang, followed by childcare facilities, medical service facilities and large commercial building. The highest of asbestos was 0.0072 each/cc at childcare facilities and that of radon was 1.41 pCi/L at art gallery. PM10 showed positive correlations to TSC with $R^2\0.5332$ by lognormal equation at childcare facilities. CO2 showed positive correlations to CO at childcare facilities and indoor parking place. Lognormal equation fitted to the VOCs data more than normal equation in all facilities.

Evaluation of Indoor Air Quality in a Department of Radiation Oncology Located Underground (지하에 위치한 방사선종양학과에서의 실내공기 질 평가)

  • Kim, Won-Taek;Shin, Yong-Chul;Kang, Dong-Mug;Ki, Yong-Kan;Kim, Dong-Won;Kwon, Byung-Hyun
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.243-252
    • /
    • 2005
  • Purpose: Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. this study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Methods and Materials : Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate. carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor all quality, All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Results: Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritatation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the contaminated-air circulation immediately Conclusion We verified that some IAQ-related factors and inadequate ventilating system could cause subjective symptoms in hospital workers. The evaluation of IAQ was surely needed to improve the underground working environments for hospital workers and patients. On the basis of these data, from now on, we should actively engage in designs of the department of radiation oncology or improvement in environments of the existing facilities.