• Title/Summary/Keyword: Indoor mobile robot

Search Result 292, Processing Time 0.026 seconds

Obstacle Avoidance of a Mobile Robot Using Low-Cost Ultrasonic Sensors with Wide Beam Angle (지향각이 넓은 저가의 초음파센서를 이용한 이동로봇의 장애물 회피)

  • Choi, Yun-Kyu;Choi, Woo-Soo;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1102-1107
    • /
    • 2009
  • An ultrasonic sensor has been widely used as a range sensor for its low cost and capability of detecting some obstacles, such as glasses and black surfaces, which are not well detected by a laser scanner and an IR sensor. Although low-cost sensors are preferred for practical service robots, they suffer from the inaccurate and insufficient range information. This paper proposes a novel approach to obstacle avoidance using low-cost anisotropic ultrasonic sensors with wide beam angle. In this paper, obstacles can be detected by the proposed sensor configuration which consists of one transmitter and three receivers. Because even wide obstacles are represented by a point, which corresponds to the intersection of range data from each receiver of the anisotropic sensor, a robot cannot avoid wide obstacles successfully. This paper exploits the probabilistic mapping technique to avoid collision with various types of obstacles. The experimental results show that the proposed method can robustly avoid obstacles in most indoor environments.

The Development of Ecobot Robot for Friendly Environment Smart Home Appliance Application System (친환경 스마트 가전 응용 시스템용 Ecobot 로봇 플랫폼 개발)

  • Moon, Yong-Seon;Bae, Young-Chul;Cha, Hyun-Rok;Roh, Sang-Hyun;Park, Jong-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.4
    • /
    • pp.480-485
    • /
    • 2010
  • In this paper, we developed mobile robot platform called Ecobot for the application system of friendly environment smart home appliance. Ecobot fulfills the purposes of monitoring of the healthy environment and guidance in the application system of friendly smart environment home appliance, home network formed by Zigbee network. For the healthy environment, the system contains monitoring sensor. Moreover, it continuously keeps the healthy environment by controlling the smart home appliances linkng with Zigbee network. And also using the URG-04LX laser distance sensor, it monitors indoor environment through autonomous moving and collision avoidance.

A Study on the Localization using Passive RFID and Sonar for Mobile Robot In Indoor environment (실내 환경에서 RFID와 초음파를 이용한 이동로봇의 위치 추정에 관한 연구)

  • Jung, Ki-Ho;Jang, Chul-Woong;Kang, Shin-Hyuk;Lee, Dong-Kwang;Yeon, Mun-Jin;Jang, Mun-Suck;Kong, Jung-Shik;Kwon, Oh-Sang;Lee, Eung-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.331-332
    • /
    • 2007
  • In this paper we analyze whether recent Radio Frequence Identification technology can be used to improve the localization of mobile robot in their environment. This system make use of power control because Tag with Reader distance measurement. We are accurately the low at former time than the environment. A distance measurement is rather correct. This system used 900MHz Frequencies.

  • PDF

Omnidirectional Camera System Design for a Security Robot (경비용 로봇을 위한 전방향 카메라 장치 설계)

  • Kim, Kilsu;Do, Yongtae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.74-81
    • /
    • 2008
  • This paper describes a low-cost omnidirectional camera system designed for the intruder detection capability of a security robot. Moving targets on sequential images are detected first by an adaptive background subtraction technique, and the targets are identified as intruders if they fail to enter a password within a preset time. A warning message is then sent to the owner's mobile phone. The owner can check scene pictures posted by the system on the web. The system developed worked well in experiments including a situation when the indoor lighting was suddenly changed.

  • PDF

Obstacle Detection and Self-Localization without Camera Calibration using Projective Invariants (투사영상 불변량을 이용한 장애물 검지 및 자기 위치 인식)

  • 노경식;이왕헌;이준웅;권인소
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.228-236
    • /
    • 1999
  • In this paper, we propose visual-based self-localization and obstacle detection algorithms for indoor mobile robots. The algorithms do not require calibration, and can be worked with only single image by using the projective invariant relationship between natural landmarks. We predefine a risk zone without obstacles for a robot, and update the image of the risk zone, which will be used to detect obstacles inside the zone by comparing the averaging image with the current image of a new risk zone. The positions of the robot and the obstacles are determined by relative positioning. The method does not require the prior information for positioning robot. The robustness and feasibility of our algorithms have been demonstrated through experiments in hallway environments.

  • PDF

Grid Map Building based on Reliability Model of Sonar Data (초음파 데이터의 신뢰도 모델 기반 지도 작성)

  • Han, Hye-Min;Park, Joong-Tae;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1219-1226
    • /
    • 2011
  • This paper proposes a novel approach to building an occupancy grid map using sonar data. It is very important for a mobile robot to recognize and construct its surrounding environments for navigation. However, the grid map constructed by ultrasonic sensors cannot represent a realistic shape of given environments due to incorrect sonar measurements caused by specular reflection. To overcome this problem, we propose an advanced sonar sensor model which consists of distance and shape factors used to determine the reliability of sensor data. Through this sensor model, a robot can build a high-quality grid map. The proposed method was verified by various experiments and showed that the robot could build an accurate map with sonar data in various indoor environments.

Implementation of Wheelchair Robot Applying SLAM and Global Path Planning Methods Suitable for Indoor Autonomous Driving (실내 자율주행에 적합한 SLAM과 전역경로생성 방법을 적용한 휠체어로봇 구현)

  • Baek, Su-Jin;Kim, A-Hyeon;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.6
    • /
    • pp.293-297
    • /
    • 2021
  • This paper presents how to create a 3D map and solve problems related to generating a global path planning for navigation. Map creation and localization were performed using the RTAB-Map package to create a 3D map of the environment. In addition, when the target point is within the obstacle space, the problem of not generating a global path was solved using the asr_navfn package. The performance of the proposed system is validated through experiments with a wheelchair-type robot.

Seamless Routing and Cooperative Localization of Multiple Mobile Robots for Search and Rescue Application

  • Lee, Chang-Eun;Im, Hyun-Ja;Lim, Jeong-Min;Cho, Young-Jo;Sung, Tae-Kyung
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.262-272
    • /
    • 2015
  • In particular, for a practical mobile robot team to perform such a task as that of carrying out a search and rescue mission in a disaster area, the network connectivity and localization have to be guaranteed even in an environment where the network infrastructure is destroyed or a Global Positioning System is unavailable. This paper proposes the new collective intelligence network management architecture of multiple mobile robots supporting seamless network connectivity and cooperative localization. The proposed architecture includes a resource manager that makes the robots move around and not disconnect from the network link by considering the strength of the network signal and link quality. The location manager in the architecture supports localizing robots seamlessly by finding the relative locations of the robots as they move from a global outdoor environment to a local indoor position. The proposed schemes assuring network connectivity and localization were validated through numerical simulations and applied to a search and rescue robot team.

Observation Likelihood Function Design and Slippage Error Compensation Scheme for Indoor Mobile Robots (실내용 이동로봇을 위한 위치추정 관측모델 설계 및 미끄러짐 오차 보상 기법 개발)

  • Moon, Chang-Bae;Kim, Kyoung-Rok;Song, Jae-Bok;Chung, Woo-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1092-1098
    • /
    • 2007
  • A mobile robot localization problem can be classified into following three sub-problems as an observation likelihood model, a motion model and a filtering technique. So far, we have developed the range sensor based, integrated localization scheme, which can be used in human-coexisting real environment such as a science museum and office buildings. From those experiences, we found out that there are several significant issues to be solved. In this paper, we focus on three key issues, and then illustrate our solutions to the presented problems. Three issues are listed as follows: (1) Investigation of design requirements of a desirable observation likelihood model, and performance analysis of our design (2) Performance evaluation of the localization result by computing the matching error (3) The semi-global localization scheme to deal with localization failure due to abrupt wheel slippage In this paper, we show the significance of each concept, developed solutions and the experimental results. Experiments were carried out in a typical modern building environment, and the results clearly show that the proposed solutions are useful to develop practical and integrated localization schemes.

Indoor Localization by Matching of the Types of Vertices (모서리 유형의 정합을 이용한 실내 환경에서의 자기위치검출)

  • Ahn, Hyun-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.6
    • /
    • pp.65-72
    • /
    • 2009
  • This paper presents a vision based localization method for indoor mobile robots using the types of vertices from a monocular image. In the images captured from a camera of a robot, the types of vertices are determined by searching vertical edges and their branch edges with a geometric constraints. For obtaining correspondence between the comers of a 2-D map and the vertex of images, the type of vertices and geometrical constraints induced from a geometric analysis. The vertices are matched with the comers by a heuristic method using the type and position of the vertices and the comers. With the matched pairs, nonlinear equations derived from the perspective and rigid transformations are produced. The pose of the robot is computed by solving the equations using a least-squares optimization technique. Experimental results show that the proposed localization method is effective and applicable to the localization of indoor environments.