• Title/Summary/Keyword: Indoor Wireless Location

Search Result 178, Processing Time 0.032 seconds

A Two-Way Ranging WPAN Location System with Clock Offset Estimation (클락 오프셋 추정 방식을 이용한 TWR WPAN 측위 시스템)

  • Park, Jiwon;Lim, Jeongmin;Lee, Kyujin;Sung, Tae-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • Compared to OWR (One-Way Ranging) method that requires precise network time synchronization, TWR (Two-Way Ranging) method has advantages in building an indoor WPAN (Wireless Personal Area Network) location system with lower cost. However, clock offsets of nodes in WPAN system should be eliminated or compensated to improve location accuracy of the TWR method. Because conventional clock offset elimination methods requires multiple TWR transactions to reduce clock offset, they produce network traffic burden instead. This paper presents a clock offset estimation method that can reduce clock offset error with a single TWR transaction. After relative clock offsets of sensor nodes are estimated, clock offsets of mobile tags are estimated using a single TWR communication. Simulation results show that location accuracy of the proposed method is almost similar to the conventional clock offset elimination method, while its network traffic is about a half of the conventional method.

A Convergency Study on the QR Code Perception Indoor-mobile Robot Control - Focused on Wireless System Configuration (QR 코드 인식 실내이동 로봇제어 융합연구 - 무선시스템 구성을 중심으로)

  • Lee, Jeongl-Ick
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.251-255
    • /
    • 2019
  • The QR codes are printed in sticker form and have many advantages in terms of location recognition accuracy or installation cost compared to the location recognition method, which attaches artificial indicators to ceilings or walls for low-cost location recognition, and the way in which the location is recognized by vision, to create robots that are generally applicable to all industries. In this study, it is shown that the two-dimensional square bar code applied to the robot within 3 mm of error allows the robot to be made with high accuracy and accurate location control. In particular, the fusion research, combined with various engineering technologies, describes QR code-aware indoor mobile robot control research centered on the construction of the system.

Indoor RSSI Characterization using Statistical in Wireless Sensor Network (무선 센서네트워크에서의 통계적 방법에 의한 실내 RSSI 측정)

  • Pu, Chuan-Chin;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2172-2178
    • /
    • 2007
  • In indoor environment, the combination of the two variations, large scale(path loss) and small scale(fading), leads to non-linear variation of RSSI(received signal strength indicator) values as distance varied. This has been one of the difficulties for indoor location estimation. This paper presents new findings on indoor RSSI characterization for more accurate model building. Experiments have been done statistically to find overall trend of RSSI values at different places and times within the same room. From experiments, it has been shown that the variation of RSSI values can be determined by both spatial and temporal factors. These two factors are directly indicated by the two main parameters of path loss model. The results show that all sensor nodes which are located at different places share the same characterization value for the temporal parameter whereas different values for the spatial parameters. The temporal parameter also has a large scale variation effect that is slowly time varying due to environmental changes. Using this relationship, the characterization for location estimation can be more efficient and accurate.

Design and Implementation of Intelligent Wireless Sensor Network Based Home Network System (무선 센서 네트워크 기반의 지능형 홈 네트워크 시스템 설계 및 구현)

  • Shin, Jae-Wook;Yoon, Ba-Da;Kim, Sung-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.465-468
    • /
    • 2007
  • An intelligent home network system using low-power and low-cost sensor nodes was designed and implemented. In Intelligent Home Network System, active home appliances control is composed of RSSI (Received Signal Strength Indicator) based user indoor location tracking, dynamic multi-hop routing, and learning integration remote-control. Through the remote-control learning, home appliances can be controlled in wireless network environment. User location information for intelligent service is calculated using RSSI based Triangle measurement method, and then the received location information is passed to Smoothing Algorithm to reduce error rate. In order to service Intelligent Home Network, moreover, the sensor node is designed to be held by user. The gathered user data is transmitted through dynamic multi-hop routing to server, and real-time user location & environment information are displayed on monitoring program.

  • PDF

Fingerprint-Based Indoor Logistics Location Tracking System (핑거프린트에 기반한 실내 물류 위치추적 시스템)

  • Kim, Doan;Park, Sunghyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.898-903
    • /
    • 2020
  • In this paper, we propose an indoor logistic tracking system that identifies the location and inventory of the logistics in the room based on fingerprints. Through this, we constructed the actual infrastructure of the logistics center and designed and implemented the logistics management system. The proposed system collects the signal strength through the location terminal and generates the signal map to locate the goods. The location terminal is composed of a UHF RFID reader and a wireless LAN card, reads the peripheral RFID signal and the signal of the wireless AP, and transmits it to the web server. The web server processes the signal received from the location terminal and stores it in the database, and the user uses the data to produce the signal map. The proposed system combines UHF RFID with existing fingerprinting method to improve performance in the environment of querying multiple objects.

Real-time Visitor's Behavior Analysis System via Ultra-Wide Band Radar (초광대역 레이더를 이용한 실시간 관람 행태 분석 시스템)

  • Lee, Joosoon;Seo, Hogeon;Lee, Kyoobin
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.85-90
    • /
    • 2019
  • The Ultra-Wide Band sensor is widely used as a wireless indoor localization technology with frequency bands in the GHz range. Meanwhile, in museums, not only the real-time location of visitors but also information on visit route and duration time is required for patrons' behavior analysis. In this paper, the analysis system based Ultra-Wide Band radar for visitor's viewing behavior is introduced and experimented in the real environment. We built the system in National Museum of Korea, and its 22 Ultra-Wide Band radar sensors receive the real-time location of their visitors: this analyzes the visit route and visit time for patrons.

Performance Evaluation of RSSI-based Trilateration Localization Methods (RSSI기반에서 다양한 삼변측량 위치인식 기법들의 성능평가)

  • Kim, Sun-Gwan;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2488-2492
    • /
    • 2011
  • Currently, the importance of location-based services and location awareness has been grown due to the advancement of wireless communication technologies. Among several localization techniques, the trilateration localization is one of major localization techniques. However, distance estimation errors caused by obstacles and indoor environment changes lead to inaccurate localization. Although there are existing trilateration localization methods, they have focused on addressing a few problems of trilateration location approaches without detailed analysis. This paper analyzes existing trilateration location methods and evaluate their performance.

Localization algorithm by using location error compensation through topology constructions (토폴로지 구축을 통한 측정 오차 보정 기반의 위치인식 기법)

  • You, Jin-Ho;Kwon, Young-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2243-2250
    • /
    • 2014
  • In wireless sensor networks(WSNs), geographical routing algorithms can enhance the network capacity. However, in real WSNs, it is difficult for each node to know its physical location accurately. Especially, indoor environments contain various obstacles such as concrete wall, furniture which cause non-line-of-sight(NLOS) conditions. To solve the problem, we propose location error compensation algorithm by using two difference topology constructions. First topology is based on mobile node's location which is obtained from anchor nodes. Second topology is based on mutual distance from neighbor nodes. The proposed algorithm efficiently detects and corrects the location errors and significantly enhances the network performance of geographic routing in the presence of location errors.

Positioning Method Using a Vehicular Black-Box Camera and a 2D Barcode in an Indoor Parking Lot (스마트폰 카메라와 2차원 바코드를 이용한 실내 주차장 내 측위 방법)

  • Song, Jihyun;Lee, Jae-sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • GPS is not able to be used for indoor positioning and currently most of techniques emerging to overcome the limit of GPS utilize private wireless networks. However, these methods require high costs for installation and maintenance, and they are inappropriate to be used in the place where precise positioning is needed as in indoor parking lots. This paper proposes a vehicular indoor positioning method based on QR-code recognition. The method gets an absolute coordinate through QR-code scanning, and obtain the location (an relative coordinate) of a black-box camera using the tilt and roll angle correction through affine transformation, scale transformation, and trigonometric function. Using these information of an absolute coordinate and an relative one, the precise position of a car is estimated. As a result, average error of 13.79cm is achieved and it corresponds to just 27.6% error rate in contrast to 50cm error of the recent technique based on wireless networks.

Study of Localization Based on Fingerprinting Technique Using Uplink CSI in Cloud Radio Access Network (클라우드 무선접속 네트워크에서 상향링크 채널 상태 정보를 이용한 핑거프린팅 기반 실내 측위에 관한 연구 시스템)

  • Woo, Sangwoo;Lee, Sangheon;Mun, Cheol
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 2019
  • With 5G standards proceeding in earnest and increasing demand for services of indoor localization, research on indoor location recognition is being studied in various industrial fields, and research based on fingerprint recognition technology using Wireless Local Area Network (WLAN) is representative. In this paper, we propose an indoor positioning system based on fingerprinting technique that uses Cloud Radio Access Network (C-RAN) architecture and Channel State Information (CSI). In order to improve the performance in indoor positioning, we combined existing fingerprinting method and K nearest neighbor (KNN) technology which is one of the machine running technique. The performance improvements of the proposed indoor positioning system was verified by comparative experiments with the existing localization technique in a indoor localizztion testbed.