• Title/Summary/Keyword: Indoor Location System

Search Result 443, Processing Time 0.026 seconds

A Location Tracking System using BLE Beacon Exploiting a Double-Gaussian Filter

  • Lee, Jae Gu;Kim, Jin;Lee, Seon Woo;Ko, Young Woong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1162-1179
    • /
    • 2017
  • In this paper, we propose indoor location tracking method using RSSI(Received Signal Strength Indicator) value received from BLE(Bluetooth Low Energy) beacon. Due to the influence of various external environmental factors, it is very difficult to improve the accuracy in indoor location tracking. In order to solve this problem, we propose a novel method of reducing the noise generated in the external environment by using a double Gaussian filter. In addition, the value of the RSSI signal generated in the BLE beacon is different for each device. In this study, we propose a method to allocate additional weights in order to compensate the intensity of signal generated in each device. This makes it possible to improve the accuracy of indoor location tracking using beacons. The experiment results show that the proposed method effectively decrease the RSSI deviation and increase location accuracy. In order to verify the usefulness of this study, we compared the Kalman filter algorithm which is widely used in signal processing. We further performed additional experiments for application area for indoor location service and find that the proposed scheme is useful for BLE-based indoor location service.

Implementation of Location-Based Smart Campus and Class Guide System Using Beacon (비콘을 이용한 위치 기반의 스마트 학교 및 수업 안내 시스템 구현)

  • Kim, Myung-Ah;Kim, Da-Sol;Hwang, Ji-Yeon;Chang, Byeong-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.2
    • /
    • pp.419-426
    • /
    • 2018
  • Recently, indoor locating using beacon has gained much attention as an indoor locating technology. This technology has been used for various indoor LBS(location-based services). However, there is a lack of research on LBS service specialized in university yet. In this paper, we designed and implemented a smart LBS system using beacon for campus and class guide in the university. This system provides for campus and class guide services based on the current specific location in the campus, This system can be improved as more precise becon technology is developed.

Implementation of Indoor Location-Aware System based on Probability Distribution of RSSI (RSSI 확률분포를 사용한 실내 위치 인식 시스템의 구현)

  • Kim, Myung Gwan;Kim, Jin Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.9-14
    • /
    • 2008
  • Ubiquitous implementation of indoor location-based technology is recognized that one of the important elements of the technology. Specifically, the hospital management of patients, the silver-town management, the implementation of the smart home for the indoors rather than outdoors in a range of broadband users for location-aware technology is needed. This paper in wireless devices with an indoor location awareness shows about the system's technical design and implementation. Location-based technology for wireless LAN users aware of the strength of radio signals (Received Signal Strength Indication, RSSI) using trilateration. Topographic mapping system will be implemented wireless devices and servers, Access Point (AP), which is the system's development and testing throughout the physical environment to determine the potential for real-life applications.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

Smart Phone Sensor-Based Indoor Location Tracking System for Improving the Location Error of the Radio Environment (무선 환경의 위치 정보 오차 개선을 위한 스마트폰 센서 기반 실내 위치 추적 시스템)

  • Lee, Dae-Young;Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.74-79
    • /
    • 2015
  • In this paper, in order to improve the error is utilized to location tracking the smart sensor detects a walking information user, RSSI is to provide an indoor position tracking system that is capable of correcting an error in terms weak. The acceleration sensor is able to detect the activity in the user walking and detects the number of step and the moving distance using the same. The Direction sensor is utilized as a digital compass, to detect the moving direction of the user. As a result of detecting the walking information using the sensor, it can be showed that this proposed indoor positioning system has a high degree of accuracy for the number of steps and the movement direction. Therefore, this paper shows that the proposed technique can correct the error of the location information to be problem in the conventional indoor location system which uses the only Wi-Fi APs by estimating the user's movement direction and distance using the sensors in smartphone without an additional equipment and cost.

RFID Based Indoor Positioning System Using Event Filtering

  • Bok, Kyoungsoo;Yoo, Jaesoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.335-345
    • /
    • 2017
  • Recently, location systems using RFID technology have been studied in indoor environments. However, the existing techniques require high computational cost to compute the location of a moving object because they compare the location proximity of all reference tags and objects. In this paper, we propose an RFID based location positioning scheme using event filtering, which reduces the computation cost of calculating the locations of moving objects while maintaining the accuracy of location estimation. In addition, we propose an incremental location update policy to reduce the location update cost for moving objects. We also compare the proposed scheme with one of the localization schemes, LANDMARC using a performance evaluation. As a result, the proposed scheme outperforms LANDMARC in terms of the computational cost of location estimation. The proposed scheme also reduces the cost of location update by using the RFID-based update policy.

Data acquisition and computation methods for improved location awareness in the indoor location system (실내 위치 시스템에서의 향상된 위치 인식을 위한 데이터 수집 및 연산 기법)

  • Yoon, Chang-Pyo;Hwang, Chi-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.270-271
    • /
    • 2015
  • Recently, There is Increasing interest in the intelligent services using the Internet of Things indoor positioning technologies that enable the communication of information between the objects. In particular Applications and demand for the indoor location based services using smart devices has made active. An indoor location positioning technology for this purpose BLE (Bluetooth Low Energy) has been a lot of interest in technology increases. If iBeacon of BLE(Bluetooth Low Energy) is made available to provide a signal for the indoor location information measurement then reliability of Indoor location information is lowered by signal interference. In this paper, Proposes a technique for data acquisition method for obtaining reliable position information and reliable position information calculation method from signal information data of iBeacon.

  • PDF

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

Estimation of Metabolic Rate Estimation for Location-based Human Adaptive Air-conditioner in Smart Home (스마트 홈에서 위치 기반 인간 적응형 냉난방기를 위한 신체 활동량 추정)

  • Kim, Hyun-Hee;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2010
  • If an appliance perceives the location or health condition of a resident in the smart home, it can provide more intelligent service actively. That is, while the conventional appliance is operated by manual input of a resident, the location-based human adaptive appliance detects the resident's information such as location, activity pattern, or health condition by itself and provides the most suitable living condition for the resident autonomously. This paper presents the real-time location-based metabolic rate estimation method that measures the amount of physical activity (metabolic rate) for location-based human adaptive air-conditioner. And, the feasibility of the algorithm is evaluated experimentally on a test bed using the pyroelectric infrared sensor-based indoor location aware system (PILAS) that is a non-terminal-based location-aware system.