• Title/Summary/Keyword: Indole-3-acetic acid

Search Result 229, Processing Time 0.021 seconds

Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors (생물반응기를 이용한 적하수오 부정근의 바이오매스와 생리활성물질 대량생산)

  • Lee, Kyung-Ju;Park, Youngki;Kim, Ja-Young;Jeong, Taek-Kyu;Yun, Kyung-Seop;Paek, Kee-Yoeup;Park, So-Young
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.34-42
    • /
    • 2015
  • This study was conducted to investigate the productivity of biomass and antioxidant compounds in Polygonum multiflorum by culturing explants in air-lift bioreactor containing Murashige and Skoog (MS) medium, by adding different concentrations of auxins [indole-3-butyric acid (IBA) and naphthalene acetic acid (NAA)], sucrose, methyl jasmonate (MeJA), and salicylic acid (SA). Results of this study revealed that the explants culturing on the medium supplemented with $9.84{\mu}M$ IBA and 50 g/L sucrose were observed to have higher productivity of biomass and bioactive compound than other treatments used. Thus, we expect that these results will be helpful for large-scale production of biomass and antioxidant compounds from Polygonum multiflorum.

An Evaluation of Plant Growth Promoting Activities and Salt Tolerance of Rhizobacteria Isolated from Plants Native to Coastal Sand Dunes (해안사구의 토착식물로부터 분리된 근권세균의 내염능과 식물성장촉진능 평가)

  • Hong, Sun Hwa;Lee, Mi Hyang;Kim, Ji Seul;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.261-267
    • /
    • 2012
  • Coastal sand dunes are important for ecosystems due to the variety of rare species that can be found in this kind of habitat, and the beautiful landscapes they create. For environmental remediation, a potential strategy is phytoremediation using the symbiotic relationship of plants and microbes in the rhizosphere, which has proven ecologically sound, safe, and cost effective. Ninety-five colonies were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Rorippa islandica, Rumex crispus, Artemisia princeps var. orientalis, Lilium sp Stellaria media, and Gramineae. These colonies were then tested for plant growth promoting activities (PGPAs) such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderphores synthesis ability. In addition, salt tolerance was evaluated at 4% and 8% salt concentrations. It was observed that amongst the test subjects about 50% of the strains had a high resistance to salinity. Many of them could produce indole-3-acetic acid (IAA) IAA (in RS 13.9% and in RP 7.6%), exhibited ACC deaminase activity (55.8% in RS and 36.6% in RP), and could synthesize siderphores (62.7% in RS and 50% in RP). Correlation coefficient analyses were carried out for the three kinds of plant growth promoting abilities (PGPA) and salt tolerance. A positive correlation was found between an ability to synthesize siderphores and ACC deaminase activity (r=0.605, p<0.037). Similarly, positive correlations were noted between salt tolerance and ACC deaminase activity (r=0.762, p<0.004, r=0.771), and salt tolerance and an ability to synthesize siderphores (r=0.771, p<0.003).

Effect of exogeneous plant growth regulators on morphogenetic response in vitro by embryo and leaf cultures of Camellia sinensis(L.) O. Kuntze (차나무 잎과 배 배양에 있어서 식물 생장조절물질이 형태형성에 미치는 영향)

  • PARK, Young Goo;AHN, In-Suk;BOZHKOV Peter
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.3
    • /
    • pp.129-135
    • /
    • 1997
  • Morphogenetic responses were investigated by culturing embryo and leaf explants of Korean wild type tea plant, Camellia sinensis (L.) O. Kuntze. Induction of direct somatic embryogenesis as well as adventitious and/or axillary shoots was obtained from mature zygotic embryo cultures on Murashige and Skoog (MS) basal medium having 5 to $20\mu\textrm{M}$cytokinin a lone. Morphogenetic response was decreased dramatically by the addition of auxins tested. One hundred percent of induced and isolated shoots formed roots after four weeks of culture on half-strength MS or quarter-strength Schenk and Hildebrandt (SH) media supplemented with $10\mu\textrm{M}$indole-3-butyric acid (IBA). Immature zygotic embryos were shown to be a suitable explant for embryogenic callus formation in the presence of 2, 4-dichlorophenoxyacetic acid(2, 4-D) in basal medium. Mature zygotic embryo originated leaves were used to test their ability for mophogenesis by incorporating plant growth regulators such as IBA, naphthyl-1-acetic acid (NAA), and 6-benzylaminopurine (BAP). Apparently, the morphogenetic responses of the cultured explant sources on the types and/or levels of plant growth regulators tested were observed visually.

  • PDF

Physiological Changes in Rooting Zone of Dwarf Apple Rootstocks (Malus domestica Borkh.) after Stem Etiolation Treatment (사과 왜성대목들의 줄기 황화처리에 따른 발근 부위의 생리적 변화)

  • Kwon, Soon-Il;Kim, Mok-Jong;Paek, Pong-Nyol;Nam, Jong-Chul;Kang, In-Kyu
    • Journal of Bio-Environment Control
    • /
    • v.16 no.2
    • /
    • pp.151-156
    • /
    • 2007
  • This work was conducted to investigate the important rooting factors through comparative analysis of a physiological differentiation after layering treatment using four apple rootstocks of different rooting abilities; M.26, M.9, O.3, and Mo.84. Mo.84 showed the highest rooting rate in from rootstocks, while O.3 was the lowest. Mo.84 also found to have the highest indole-3-acetic acid (IAA) content, although the fluctuation of IAA contents was not consistent with layering treatment. In contrast, abscisic acid (ABA) content of Mo.84 which showed highest rooting was lowest among rootstocks regardless of layering treatment. And ABA contents of all rootstocks were decreased after layering treatment than before layering treatment. O.3 which showed poor rooting rate revealed lowest in boron content. Carbohydrate/nitrogen (C/N) ratio of Mo.84 was the highest in all rootstocks. Therefor, we assumed that he IAA contents in layering treated rootstocks were not seemed to be a major rooting factor, but the changes in ABA contents and boron levels limit rooting in dwarf apple rootstocks.

Plant Growth Promoting and Disease Controlling Activities of Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 and Burkholderia stabilis ANG51 Isolated from Soil (토양에서 분리한 Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40 및 Burkholderia stabilis ANG51의 식물 생장촉진 활성 및 식물병 방제활성)

  • Kim, Ji-Youn;Kim, Hee Sook;Lee, Song Min;Park, Hye-Jung;Lee, Sang-Hyeon;Jang, Jeong Su;Lee, Mun Hyon
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.38-47
    • /
    • 2020
  • This study was conducted to investigate both plant growth-promoting and plant disease- controlling activities of bacterial strains isolated from soil. All the isolated strains were able to grow at various temperatures. All the strains, except ANG40, showed antagonistic effects against various phytopathogenic fungi. This antagonism can be ascribed to the production of siderophores and antibiotic substances. In addition, all the strains showed abilities such as nitrogen fixation, phosphate solubilization, and siderophore production. These results suggest that nitrogen, phosphorus, and iron can be converted into forms that can be easily absorbed by the plants for their growth. Analysis of the growth-promoting properties revealed that ANG51 produced 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indole-3-acetic acid (IAA) both of which are related to ethylene production. In contrast, the other strains were found to have only IAA-producing ability. Therefore, this study suggests that Pseudomonas geniculata ANG3, Exiguobacterium acetylicum ANG40, and Burkholderia stabilis ANG51, which were selected through analysis of comparative advantages for both plant growth promotion and disease-controlling activity, may be used as biological agents.

Optimal Medium Compositions for Plant Regeneration via Adventitious Shoot Formation Using 'Fuji' Apple Leaf Explants (사과 '후지'의 잎 절편체로부터 신초 기관형성을 통한 식물체 재생에 적합한 배지조성)

  • Lee, Yoon Kyung;;Hyung, Nam-In
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.310-317
    • /
    • 2019
  • Plant regeneration protocols for adventitious shoot organogenesis from apple (Malus domestica 'Fuji') leaf explants were developed in the present study. The effects of different basal media, types and concentrations of carbon sources, and concentrations of plant growth regulators were evaluated to determine the optimal shoot regeneration conditions for 'Fuji' apple leaf explants. On different treatments involving combinations of basal media, LS and N6 media, and different types and concentrations of cytokinins, 6-benzyl-adenine (BA) and thidiazuron (TDZ), shoot regeneration rates were the highest in the N6 medium combined with BA. Among the plant growth regulator and carbon source combination treatments, 5.0 mg/L BA, and 0.1 mg/L α-naphthalene acetic acid (NAA) with 40 g/L sorbitol was the optimal combination for shoot regeneration. In addition, the optimal sorbitol concentrations for shoot regeneration were 40 g/L and 60 g/L. The highest regeneration (81.8%) was achieved using 40 g/L sorbitol. The regenerated shoots elongated and rooted on rooting medium, consisting of 1/4 MS medium with 0.2 mg/L indole-3-butyric acid (IBA). The plantlets were acclimatized and the regenerated plants exhibited normal phenotypes.

Changes of Root Physiology of Tissue Cultured M.9 Apple Rootstock after Layering (기내 배양 사과 대목 M.9의 순화 후 휘묻이 번식 시 발근 관련 생리적 특성 변화)

  • Kwon Soon-Il;Kim Mok-Jong;Kang In-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.181-186
    • /
    • 2005
  • This work was conducted to evaluate the effects of rooting on tissue cultured M.9 (Malus domestica Bork. cv, tcM.9) after layering in field. We investigated an appearance period of first root in shoot, rooting ratio, contents of indole-3-acetic acid (IAA), abscisic acid (ABA), inorganic matters, sugars, and lignin in rooting areas of stems by layering. First root in shoot of tcM.9 and natural M.9 appeared 25 and 30 days after layering (DAL), respectively. Rooting ratio was much higher in tcM.9 than in natural M.9. The content of IAA was higher in tcM.9 than in natural M.9 before layering, but it was reversed at 20 and 30 DAL. In contrast, the content of ABA was much higher in natural M.9 than in tcM.9 in case of both before and 10 and 20 DAL. The contents of N, B, Mn, and Zn were significantly higher in tcM.9 than in natural M.9 both before and 10 and 20 DAL. The contents of sugars in tcM.9 had the similar pattern of the contents of inorganic materials. There were statistically significant differences in the contents of sucrose and glucose at 30 DAL as well as the content of maltose at 20 and 30 DAL. The content of lignin was significantly higher in tcM.9 than in natural M.9 before layering and 10 and 30 DAL while there was no difference 20 DAL. Therefore, improvement of rooting ability in the tissue cultured root stock M.9 might be due to the changes of inorganic matters or lignin rather than that of sugars and hormones.

Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12 (Variovorax sp. PMC12 균주에 의한 토마토의 생물학 및 비생물학적 스트레스 저항성 증진)

  • Kim, Hyeon Su;Lee, Shin Ae;Kim, Yiseul;Sang, Mee kyung;Song, Jaekyeong;Chae, Jong-Chan;Weon, Hang-Yeon
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.221-232
    • /
    • 2018
  • Rhizobacteria play important roles in plant growth and health enhancement and render them resistant to not only biotic stresses but also abiotic stresses, such as low/high temperature, drought, and salinity. This study aimed to select plant growth promoting rhizobacteria (PGPR) with the capability to mitigate biotic and abiotic stress effects on tomato plants. We isolated a novel PGPR strain, Variovorax sp. PMC12 from tomato rhizosphere. An in vitro assay indicated that strain PMC12 produced ammonia, indole-3-acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which are well-known traits of PGPR. The aboveground fresh weight was significantly higher in tomato plants treated with strain PMC12 than in non-treated tomato plants under various abiotic stress conditions including salinity, low temperature, and drought. Furthermore, strain PMC12 also enhanced the resistance to bacterial wilt disease caused by Ralstonia solanacearum. Taken together, these results indicated that strain PMC12 is a promising biocontrol agent and a biostimulant to reduce the susceptibility of plants to both abiotic and biotic stresses.

Effect of Hypoxia-Ischemia on Striatal Monoamine Metabolism in Neonatal Rat Brains (저산소-허혈 손상이 신생 흰쥐의 뇌 선조체(Striatum) Monoamine 대사에 미치는 영향)

  • Jee, Youn Hee;Kim, Hyung Gun;Park, Woo Sung;Chang, Young Pyo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.8
    • /
    • pp.789-794
    • /
    • 2003
  • Purpose : We intended to evaluate the effect of hypoxia-ischemia on extracellular striatal monoamine metabolism in neonatal rat brains by in vivo microdialysis. Methods : The right common carotid arteries of five or six-day old rats were surgically ligated, and the probes for microdialysis were inserted into the right striatum with stereotaxic instrument. After stabilization for two hours, artificial cerebrospinal fluid was infused via the probe for microdialysis and samples were collected during hypoxia-ischemia and recovery periods at 20 minute intervals. The concentrations of DA(dopamine), DOPAC(3,4-di-hydroxyphenyl acetic acid), HVA(homovanillic acid), NE(norepinephrine), and 5-HIAA(5-hydroxy indole-acetic acid) were measured by HPLC(high performance liquid chromatography) and the changes were analysed. Results : The striatal levels of dopamine metabolites such as DOPAC and HVA, were significantly decreased during hypoxia-ischemia, and increased to their basal level during reoxygenation(P<0.05). Dopamine mostly increased during hypoxia but statistically not significant(P>0.05). DOPAC showed the most remarkable decrease($23.0{\pm}4.2%$, P<0.05), during hypoxia-ischemia and increase to the basal levels during reoxygenation($120.8{\pm}54.9%$, P<0.05), and HVA showed the same pattern of changes as those of DOPAC during hypoxia-ischemia($35.3{\pm}7.6%$ of basal level, P<0.05) and reoxygenation ($105.8{\pm}32.3%$). However, the level of NE did not show significant changes during hypoxia-ischemia and reoxygenation. The levels of 5-HIAA decreased($74.9{\pm}3.1%$) and increased($118.1{\pm}7.8%$) during hypoxia-ischemia and reoxygenation, respectively(P<0.005). Conclusion : Hypoxia-ischemia had a significant influence on the metabolism of striatal monoamine in neonatal rat brains. These findings suggest that monoamine, especially dopamine, and its metabolites could have a significant role in the pathogenesis of hypoxic-ischemic injury of neonatal rat brains.

The Endophytic Bacteria Bacillus velezensis Lle-9, Isolated from Lilium leucanthum, Harbors Antifungal Activity and Plant Growth-Promoting Effects

  • Khan, Mohammad Sayyar;Gao, Junlian;Chen, Xuqing;Zhang, Mingfang;Yang, Fengping;Du, Yunpeng;Moe, The Su;Munir, Iqbal;Xue, Jing;Zhang, Xiuhai
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.668-680
    • /
    • 2020
  • Bacillus velezensis is an important plant growth-promoting rhizobacterium with immense potential in agriculture development. In the present study, Bacillus velezensis Lle-9 was isolated from the bulbs of Lilium leucanthum. The isolated strain showed antifungal activities against plant pathogens like Botryosphaeria dothidea, Fusarium oxysporum, Botrytis cinerea and Fusarium fujikuroi. The highest percentage of growth inhibition i.e., 68.56±2.35% was observed against Fusarium oxysporum followed by 63.12 ± 2.83%, 61.67 ± 3.39% and 55.82 ± 2.76% against Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi, respectively. The ethyl acetate fraction revealed a number of bioactive compounds and several were identified as antimicrobial agents such as diketopiperazines, cyclo-peptides, linear peptides, latrunculin A, 5α-hydroxy-6-ketocholesterol, (R)-S-lactoylglutathione, triamterene, rubiadin, moxifloxacin, 9-hydroxy-5Z,7E,11Z,14Z-eicosatetraenoic acid, D-erythro-C18-Sphingosine, citrinin, and 2-arachidonoyllysophosphatidylcholine. The presence of these antimicrobial compounds in the bacterial culture might have contributed to the antifungal activities of the isolated B. velezensis Lle-9. The strain showed plant growth-promoting traits such as production of organic acids, ACC deaminase, indole-3-acetic acid (IAA), siderophores, and nitrogen fixation and phosphate solubilization. IAA production was accelerated with application of exogenous tryptophan concentrations in the medium. Further, the lily plants upon inoculation with Lle-9 exhibited improved vegetative growth, more flowering shoots and longer roots than control plants under greenhouse condition. The isolated B. velezensis strain Lle-9 possessed broad-spectrum antifungal activities and multiple plant growth-promoting traits and thus may play an important role in promoting sustainable agriculture. This strain could be developed and applied in field experiments in order to promote plant growth and control disease pathogens.