DOI QR코드

DOI QR Code

An Evaluation of Plant Growth Promoting Activities and Salt Tolerance of Rhizobacteria Isolated from Plants Native to Coastal Sand Dunes

해안사구의 토착식물로부터 분리된 근권세균의 내염능과 식물성장촉진능 평가

  • Hong, Sun Hwa (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Lee, Mi Hyang (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Kim, Ji Seul (Department of Environmental and Energy Engineering, The University of Suwon) ;
  • Lee, Eun Young (Department of Environmental and Energy Engineering, The University of Suwon)
  • 홍선화 (수원대학교 환경에너지공학과) ;
  • 이미향 (수원대학교 환경에너지공학과) ;
  • 김지슬 (수원대학교 환경에너지공학과) ;
  • 이은영 (수원대학교 환경에너지공학과)
  • Received : 2012.08.10
  • Accepted : 2012.09.05
  • Published : 2012.09.28

Abstract

Coastal sand dunes are important for ecosystems due to the variety of rare species that can be found in this kind of habitat, and the beautiful landscapes they create. For environmental remediation, a potential strategy is phytoremediation using the symbiotic relationship of plants and microbes in the rhizosphere, which has proven ecologically sound, safe, and cost effective. Ninety-five colonies were isolated from the rhizosphere soil (RS) or rhizoplane (RP) of Rorippa islandica, Rumex crispus, Artemisia princeps var. orientalis, Lilium sp Stellaria media, and Gramineae. These colonies were then tested for plant growth promoting activities (PGPAs) such as 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity, and siderphores synthesis ability. In addition, salt tolerance was evaluated at 4% and 8% salt concentrations. It was observed that amongst the test subjects about 50% of the strains had a high resistance to salinity. Many of them could produce indole-3-acetic acid (IAA) IAA (in RS 13.9% and in RP 7.6%), exhibited ACC deaminase activity (55.8% in RS and 36.6% in RP), and could synthesize siderphores (62.7% in RS and 50% in RP). Correlation coefficient analyses were carried out for the three kinds of plant growth promoting abilities (PGPA) and salt tolerance. A positive correlation was found between an ability to synthesize siderphores and ACC deaminase activity (r=0.605, p<0.037). Similarly, positive correlations were noted between salt tolerance and ACC deaminase activity (r=0.762, p<0.004, r=0.771), and salt tolerance and an ability to synthesize siderphores (r=0.771, p<0.003).

본 연구에서는 경기도 궁평항 지역의 해안사구에 서식하고 있는 토착식물 6종(Rorippa islandica, Rumex crispus, Artemisia princeps var. orientalis, Lilium sp Stellaria media, and Gramineae)의 식물 뿌리와 근권토양으로부터 colony library를 구축하여 식물성장촉진 능력과 내염능을 평가하였다. 분리한 근권세균 중 4.0%의 염분이 존재하는 환경에서 50% 이상의 세균이 염분에 강한 내성을 가지고 있었다. 95개의 균주를 대상으로 식물성호르몬인 IAA생산능을 가지는 균주는 근권토양에서는 13.9%, 식물뿌리에서는 7.6%였으며, 1-aminocyclopropane-1-carboxylic acid (ACC)를 제거하는 ACC deaminase 활성을 가진 균주는 근권토양에서는 55.8%, 뿌리에서는 36.6%였다. 또한, Siderphores 합성능을 가지고 있는 균주는 근권에서 62.7%, 뿌리에서는 50%를 차지하였다. 식물성장촉진능과 내염능을 가진 세균을 대상으로 상관관계를 분석한 결과, ACC deaminase 활성과 siderphore(s) 합성능 사이에는 양의 상관관계를 형성하였고(r=0.605, p<0.037), 염분 내성능과 ACC deaminase 활성, 염분 내성능과 siderphore(s) 합성능 사이에도 양의 상관관계를 형성하였다(r=0.762, p<0.004, r=0.771, p<0.003, 각각).

Keywords

References

  1. Boopathy, R. 2004. Factors limiting bioremediation technologies( review paper). Bioresour. Technol. 74: 63-67.
  2. Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean grown. Soil Sci. Soc. Am. J. 63: 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  3. Deikman, J. 1997. Molecular mechanisms of ethylene regulation of gene transcription. Physiol. Plant 100: 561-566. https://doi.org/10.1111/j.1399-3054.1997.tb03061.x
  4. Dell'Amico, E., L. Cavalca, and V. Andreoni. 2005. Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metalresistant, potentially plant growth-promoting bacteria. FEMS Microbiol. Ecol. 52: 153-162. https://doi.org/10.1016/j.femsec.2004.11.005
  5. Dworkin, M. and J. W. Foster. 1958. Experiments with some microorganism which utilize ethane and hydrogen. J. Bacteriol. 75: 592-603.
  6. Flannery, T. 2006. The history and future impact of climate change. pp. 131. The weather makers. Text publishing company PTY Ltd., Melbourne, Australia.
  7. Frankenberger, W. T. Jr, W. Brunner. 1983. Method of detection of auxin-indole-3-acetic acid in soil by high performance liquid chromatography. Soil Sci. Soc. Am. J. 47: 237-241. https://doi.org/10.2136/sssaj1983.03615995004700020012x
  8. Giovanelli, J., S. H. Mudd, and A. H. Datko. 1980. Sulfur amino acids in plants, pp. 453-505. In: Miflin, B. J. (ed.), Amino acids and derivatives. The biochemistry of plants: a comprehensive treatise. Vol. 5, Academic Press, New York, U.S.A.
  9. Gutierrez Mafiero, E. J., N. Acero, J. A. Lucas, and A. Probanza. 1996. The infuence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant and Soil 182: 67-74. https://doi.org/10.1007/BF00010996
  10. Hwang, J. S., Y. H. You, J. J. Bae, S. A. Khan, J. G. Kim, and Y. S. Choo. 2011. Effects of endophytic fungal secondary metabolites on the growth and physiological response of Carex kobomugi Ohwi. J. Coast Res. 27: 544-548.
  11. John, P. 1991. How plant molecular biologists revealed a surprising relationship between two enzymes, which took an enzyme out of a membrane where it was not located, and put it into the soluble phase where it could be studied. Plant Mol. Biol. Rep. 9: 192-194. https://doi.org/10.1007/BF02672067
  12. Johnson, D. L., D. R. Anderson, and S. P. McGrath. 2005. Soil microbial response during the phytoremediation of a PAH contaminated soil. Soil Biol. Biochem. 37: 2334-2336. https://doi.org/10.1016/j.soilbio.2005.04.001
  13. Khan, S. A., M. Hamayun, H. J. Yoon. H. Y. Kim. S. J. Suh, S. K. Hwang, J. M. Kim, I. J. Lee, Y. S. Choo, U. H. Yoon, W. S. Kong, B. M. Lee, and J. G. Kim. 2008. Plant growth promotion and Penicillium citrinum. BMC Microbiol. 8: 231. https://doi.org/10.1186/1471-2180-8-231
  14. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, I. J. Lee, and J. G. Kim. 2009. Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J. Microbiol. Biotechnol. 25: 829-833. https://doi.org/10.1007/s11274-009-9981-x
  15. Khan, S. A., M. Hamayun, H. Y. Kim, H. J. Yoon, J. C. Seo, Y. S. Choo, I. J. Lee, S. D. Kim, I. K. Rhee, and J. G. Kim. 2009. A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellins production. Biotechnol. Lett. 31: 283-287. https://doi.org/10.1007/s10529-008-9862-7
  16. Koo, S. Y., and K. S. Cho. 2006. Interaction between plants and rhizobacteria in phytoremediation of heavy metal-contaminated soil. Kor. J. Microbiol. Biotechnol. 2: 83-93.
  17. Koo, S. Y., and K. S. Cho. 2011. Characterization of Serratia sp. K1RP-49 for Application to the Rhizoremediation of Heavy Metals. Environ. Earth Sci. 1: 3-13
  18. Lee, M. S., J. O. Do, M. S. Park, S. Jung, K. H. Lee, K. S. Bae, S. J. Park, and S. B. Kim. 2006. Dominance of Lysobacter sp. in the rhizosphere of two coastal sand dune plant species, Calystegia soldanella and Elymus mollis. Antonie Leeuwenhoek 90: 19-70. https://doi.org/10.1007/s10482-006-9056-z
  19. Lim, J. H., Kim, J. G., and Kim, S. D. 2008. Selection of the auxin and ACC deaminase producing plant growth promoting rhizobacteria from the coastal sand dune plant. Kor. J. Microbiol. Biotechnol. 36: 268-275.
  20. Martinez, M L., P. Moreno-Casasola, and G. Vazquez. 1997. Effects of disturbance by sand movement and inundation by water on tropical dune vegetation dynamics. Can. J. Bot. 75: 2005-2014. https://doi.org/10.1139/b97-912
  21. Maun, M. A. 1994. Adaptations enhancing survival and establishment of seedling on coastal dune systems. Vegetatio 111: 59-70.
  22. Maun, M. A. and P. R. Baye. 1989. The ecology of Ammophila breviligulata Fern. On coastal dune ecosystem. CRC Cr. Rev. Aquat. Sci. 1: 661-681.
  23. Nehl, D. B., S. J. Allen, and J. F. Brown. 1996. Deleterious rhizosphere bacteria an intergrating perspective(review). Appl. Soil Ecol. 5: 1-20.
  24. Opelt, K. and G. Berg. 2004. Diversity and antagonistic potential of bateria associated with bryophytes from nutrientpoor habitats of Baltic sea coast. Appl. Environ. Microbiol. 70: 6569-6579. https://doi.org/10.1128/AEM.70.11.6569-6579.2004
  25. Poonguzhali, S., M. Madhaiyan, and T. Sa. 2006. Cultivation-dependent characterization of rhizobacterial communities from field grown Chiness cabbage Brassica campestris ssp pekinensis and screening of traits for potential plant growth promotion. Plant Soil 286: 167-180. https://doi.org/10.1007/s11104-006-9035-1
  26. Reed, M. L. E., and B. R.Glick. 2005. Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr. Microbiol. 51: 425-429. https://doi.org/10.1007/s00284-005-4584-8
  27. Safronova, V. I., V. V. Stepanok, G. L. Engqvist, Y. V. Alekseyev, and A. A. Belimov. 2006. Rootassociated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol. Fertil. Soils 42: 267-72. https://doi.org/10.1007/s00374-005-0024-y
  28. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderphores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  29. So, J. H., D. J. Kim, J. H. Shin, C. B. Yu, and I. K. Rhee. 2009. Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes. Kor. J. Environ. Agr. 28: 447-452.
  30. Sylvia, D. M. 1989. Nursery inoculation of sea oats with vesicular-arbuscular mycorrhizal fungi and outplanting performance of Florida beaches. J. Coast. Res. 5: 747-754.
  31. Sylvia, D. M., and M. E. Will. 1988. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl. Environ. Microbiol. 54: 348-352.
  32. Yang, S. F. and N. E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155-89. https://doi.org/10.1146/annurev.pp.35.060184.001103

Cited by

  1. Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability vol.48, pp.1, 2015, https://doi.org/10.7745/kjssf.2015.48.1.036