Browse > Article
http://dx.doi.org/10.5423/RPD.2018.24.3.221

Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12  

Kim, Hyeon Su (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Lee, Shin Ae (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Kim, Yiseul (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Sang, Mee kyung (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Song, Jaekyeong (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Chae, Jong-Chan (Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University)
Weon, Hang-Yeon (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Research in Plant Disease / v.24, no.3, 2018 , pp. 221-232 More about this Journal
Abstract
Rhizobacteria play important roles in plant growth and health enhancement and render them resistant to not only biotic stresses but also abiotic stresses, such as low/high temperature, drought, and salinity. This study aimed to select plant growth promoting rhizobacteria (PGPR) with the capability to mitigate biotic and abiotic stress effects on tomato plants. We isolated a novel PGPR strain, Variovorax sp. PMC12 from tomato rhizosphere. An in vitro assay indicated that strain PMC12 produced ammonia, indole-3-acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which are well-known traits of PGPR. The aboveground fresh weight was significantly higher in tomato plants treated with strain PMC12 than in non-treated tomato plants under various abiotic stress conditions including salinity, low temperature, and drought. Furthermore, strain PMC12 also enhanced the resistance to bacterial wilt disease caused by Ralstonia solanacearum. Taken together, these results indicated that strain PMC12 is a promising biocontrol agent and a biostimulant to reduce the susceptibility of plants to both abiotic and biotic stresses.
Keywords
Abiotic stress; Biological control; Biotic stress; PGPR; Tomato;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24.   DOI
2 Wang, C. Y. 1989. Chilling injury of fruits and vegetables. Food Rev. Int. 5: 209-236.   DOI
3 Yoo, S. J., Shin, D. J., Weon, H. Y., Song, J. and Sang, M. K. 2018 . Selection of bacteria for enhancement of tolerance to salinity and temperature stresses in tomato plants. Korean J. Org. Agric. 26: 463-475.   DOI
4 Allen, R. D. 1995. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol. 107: 1049-1054.   DOI
5 Arshad, M., Shaharoona, B. and Mahmood, T. 2008. Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.). Pedosphere 18: 611-620.   DOI
6 Basar, G. and Bhat, C. 2004. A parameterized consideration set model for airport choice: an application to the san francisco bay area. Transport. Res. B Meth. 38: 889-904.   DOI
7 Bohnert, H. J., Gong, Q., Li, P. and Ma, S. 2006. Unraveling abiotic stress tolerance mechanisms-Getting genomics going. Curr. Opin. Plant Biol. 9: 180-188.   DOI
8 Dey, R., Pal, K. K., Bhatt, D. M. and Chauhan, S. M. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol. Res. 159: 371-394.   DOI
9 Boyer, J. S. 1982. Plant productivity and environment. Science 218: 443-448.   DOI
10 De Freitas, J. R., Banerjee, M. R. and Germida, J. J. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fert. Soils 24: 358-364.   DOI
11 Dodd, I. C., Zinovkina, N. Y., Safronova, V. I. and Belimov, A. A. 2010. Rhizobacterial mediation of plant hormone status. Ann. Appl. Biol. 157: 361-379.   DOI
12 Gallegly, M. E. and Walker, J. C. 1949. Relation of environmental factors to bacterial wilt of tomato. Phytopathology 39: 936-946.
13 Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1-7.   DOI
14 Glickmann, E. and Dessaux, Y. 1995. A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796.
15 Gordon, S. A. and Paleg, L. G. 1957. Observations on the quantitative determination of indoleacetic acid. Physiol. Plant. 10: 39-47.   DOI
16 Gross, D. and Parthier, B. 1994. Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13: 93.   DOI
17 Horchani, F., Hajri, R. and Aschi-Smiti, S. 2010. Effect of ammonium or nitrate nutrition on photosynthesis, growth, and nitrogen assimilation in tomato plants. J. Plant Nutr. Soil Sci. 173: 610-617.   DOI
18 Han, J. I., Spain, J. C., Leadbetter, J. R., Ovchinnikova, G., Goodwin, L. A., Han, C. S. et al. 2013. Genome of the root-associated plant growth-promoting bacterium Variovorax paradoxus strain EPS. Genome Announc. 1: e00843-13.
19 Chen, F., Gao, Y., Chen, X., Yu, Z. and Li, X. 2013. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. Int. J. Mol. Sci. 14: 17477-17500.   DOI
20 Hassen, W., Neifar, M., Cherif, H., Najjari, A., Chouchane, H., Driouich, R. C. et al. 2018. Pseudomonas rhizophila S211, a new plant growth-promoting rhizobacterium with potential in pesticide-bioremediation. Front. Microbiol. 9: 34.   DOI
21 Jung, H. K., Kim, J. R., Woo, S. M. and Kim, S. D. 2007. Selection of the auxin, siderophore, and cellulase-producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Korean Soc. Appl. Biol. Chem. 50: 23-28. (In Korean)
22 Kang, B. G., Lee, S. Y., Lim, S. C., Kim, Y. S., Hong, S. D., Chung, K. Y. et al. 2011. Establishment of application level for the proper use of organic materials as the carbonaceous amendments in the greenhouse soil. Korean J. Soil Sci. Fert. 44: 248-255. (In Korean)   DOI
23 Kang, S. M., Khan, A. L., You, Y. H., Kim, J. G., Kamran, M. and Lee, I. J. 2014. Environmental microbiology and engineering : gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. J. Microbiol. Biotechnol. 24: 106-112.   DOI
24 Ministry of Agriculture, Food and Rural Affairs. 2016. Agriculture, Food and Rural Affairs Statistics Yearbook 2016. Ministry of Agriculture, Food and Rural Affairs, Sejong, Korea. 559 pp.
25 Leadbetter, J. R. and Greenberg, E. P. 2000. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926.   DOI
26 Leeman, M., Van Pelt, J. A., Den Ouden, F. M., Heinsbroek, M., Bakker, P. A. H. M. and Schippers, B. 1995. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay. Eur. J. Plant Pathol. 101: 655-664.   DOI
27 Liu, F., Xing, S., Ma, H., Du, Z. and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97: 9155-9164.   DOI
28 Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A. et al. 2017. Biofertilizers: a potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. Int. 24: 3315-3335.   DOI
29 Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663.   DOI
30 Onyia, C. E. and Anyanwu, C. U. 2013. Comparative study on solubilization of tri-calcium phosphate (TCP) by phosphate solubilizing fungi (PSF) isolated from nsukka pepper plant rhizosphere and root free soil. J. Yeast Fungal Res. 4: 52-57.
31 Patel, T. and Saraf, M. 2017. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. J. Plant Interact. 12: 480-487.   DOI
32 Schroth, M. and Hancock, J. 1982. Disease-suppressive soil and root-colonizing bacteria. Science 216: 1376-1381.   DOI
33 Penrose, D. M. and Glick, B. R. 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 118: 10-15.   DOI
34 Pierik, R., Sasidharan, R. and Voesenek, L. A. C. J. 2007. Growth control by ethylene: adjusting phenotypes to the environment. J. Plant Growth Regul. 26: 188-200.   DOI
35 Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1986. Microbial responses to salt-induced osmotic stress . Plant Soil 92: 471-425.   DOI
36 Saleem, M., Arshad, M., Hussain, S. and Bhatti, A. S. 2007. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J. Ind. Microbiol. Biotechnol. 34: 635-648.   DOI
37 Satake, T. and Koike, S. 1983. Sterility caused by cooling treatment at the flowering stage in rice plants : I. the stage and organ susceptible to cool temperature. Jpn. J. Crop Sci. 52: 207-214.   DOI
38 Shin, S. H., Lim, Y., Lee, S. E., Yang, N. W. and Rhee, J. H. 2001. CAS agar diffusion assay for the measurement of siderophores in biological fluids. J. Microbiol. Methods 44: 89-95.   DOI
39 Smibert, R. M. and Krieg, N. R. 1994. Phenotypic characterization. In: Methods for general and molecular bacteriology, eds. by R. G. E. Murray, W. A. Wood and N. R. Krieg, pp. 611-651. American Society for Microbiology, Washington, USA.
40 Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol. 125: 27-58.   DOI
41 So, J. H., Kim, D. J., Shin, J. H., Yu, C. B. and Rhee, I. K. 2009. Isolation and characterization of Bacillus cereus A-139 producing auxin from east coast sand dunes. Korean J. Environ. Agric. 28: 447-452. (In Korean)   DOI
42 Tahat, M. M. and Sijam, K. 2010. Ralstonia solanacearum: The bacterial wilt causal agent. Asian J. Plant Sci. 9: 385-393.   DOI
43 Van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by Rhizoshere bacteria. Ann. Rev. Phytophathol. 36: 453-483.   DOI
44 Viveganandan, G. and Jauhri, K. S. 2002. Efficacy of a rock phosphate based soil implant formulation of phosphobacteria in soybean (Glycine max Merrill). Indian J. Biotechnol. 1: 180-187.