• Title/Summary/Keyword: Individual flow control

Search Result 127, Processing Time 0.031 seconds

Power Flow Control of PV Hybrid Module System with ESS (에너지 저장 장치가 적용된 태양광 하이브리드 모듈형 시스템의 전력 조류 제어)

  • Lee, Soon-Ryung;Kim, Young-Ho;Jang, Jin-Woo;Choi, Bong-Yeon;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.473-474
    • /
    • 2013
  • In this paper, a power flow control of PV hybrid module system with ESS is proposed. Photovoltaic(PV) hybrid module system is consist of individual converter, central inverter, and energy storage system(ESS). Because PV power can be changed in particular hours and environment condition, the power management control for ESS is required. In this paper, the power flow control method for PV hybrid module system with ESS is proposed. The validity of proposed control method is verified by simulations and theoretical analysis.

  • PDF

The Flood Control of the Namgang and Andong Reservoir System by an Optimization Procedure (최적화(最適化) 기법(技法)에 의한 남강(南江)-안동(安東)댐의 홍수조절(洪水調節))

  • Kim, Sheung Kown;Yoon, Yong Nam;Lee, Sung Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.49-60
    • /
    • 1988
  • The use of an Incremental Dynamic Programming (IDP) for real-time flood control operation is investigated. The optimization model has been applied for the Namgang and Andong hypothetical flood control system in the Nakdong river basin. The objective of the operation is defined to minimize the maximum flow at the confluence of downstreams from the two reservoirs. The results are compared to the direct summation of the flood routing results from individual flood control simulation run. It shows that peak flow at the confluence is reduced markedly by reducing peak outflows from individual reservoirs and by balancing the time of the peak release between the two reservoirs.

  • PDF

A New Joint Packet Scheduling/Admission Control Framework for Multi-Service Wireless Networks

  • Long Fei;Feng Gang;Tang Junhua
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.408-416
    • /
    • 2005
  • Quality of service (QoS) provision is an important and indispensable function for multi-service wireless networks. In this paper, we present a new scheduling/admission control frame­work, including an efficient rate-guaranteed opportunistic scheduling (ROS) scheme and a coordinated admission control (ROS­CAC) policy to support statistic QoS guarantee in multi-service wireless networks. Based on our proposed mathematical model, we derive the probability distribution function (PDF) of queue length under ROS and deduce the packet loss rate (PLR) for individual flows. The new admission control policy makes admission decision for a new incoming flow to ensure that the PLR requirements of all flows (including the new flow) are satisfied. The numerical results based on ns-2 simulations demonstrate the effectiveness of the new joint packet scheduling/admission control framework.

Power Flow Control of Grid-Connected Fuel Cell Distributed Generation Systems

  • Hajizadeh, Amin;Golkar, Masoud Aliakbar
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.143-151
    • /
    • 2008
  • This paper presents the operation of Fuel Cell Distributed Generation(FCDG) systems in distribution systems. Hence, modeling, controller design, and simulation study of a Solid Oxide Fuel Cell(SOFC) distributed generation(DG) system are investigated. The physical model of the fuel cell stack and dynamic models of power conditioning units are described. Then, suitable control architecture based on fuzzy logic and the neural network for the overall system is presented in order to activate power control and power quality improvement. A MATLAB/Simulink simulation model is developed for the SOFC DG system by combining the individual component models and the controllers designed for the power conditioning units. Simulation results are given to show the overall system performance including active power control and voltage regulation capability of the distribution system.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T.S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.28-35
    • /
    • 2003
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as combined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency of the combined cycle by adopting air flow modulation was analyzed and it was concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

End-to-End Congestion Control of High-Speed Gigabit-Ethernet Networks based on Smith's Principle

  • Lee, Seung-Hyub;Cho, Kwang-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.101-104
    • /
    • 2000
  • Nowadays, the issue of congestion control in high-speed communication networks becomes critical in view of the bandwidth-delay products for efficient data flow. In particular, the fact that the congestion is often accompanied by the data flow from the high-speed link to low-speed link is important with respect to the stability of closed-loop congestion control. The Virtual-Connection Network (VCN) in Gigabit Ethernet networks is a packet-switching based network capable of implementing cell- based connection, link-by-link flow-controlled connection, and single- or multi-destination virtual connections. VCN described herein differ from the virtual channel in ATM literature in that VCN have link-by-link flow control and can be of multi-destination. VCNs support both connection-oriented and connectionless data link layer traffic. Therefore, the worst collision scenario in Ethernet CSMA/CD with virtual collision brings about end-to-end delay. Gigabit Ethernet networks based on CSMA/CD results in non-deterministic behavior because its media access rules are based on random probability. Hence, it is difficult to obtain any sound mathematical formulation for congestion control without employing random processes or fluid-flow models. In this paper, an analytical method for the design of a congestion control scheme is proposed based on Smith's principle to overcome instability accompanied with the increase of end-to-end delays as well as to avoid cell losses. To this end, mathematical analysis is provided such that the proposed control scheme guarantees the performance improvement with respect to bandwidth and latency for selected network links with different propagation delays. In addition, guaranteed bandwidth is to be implemented by allowing individual stations to burst several frames at a time without intervening round-trip idle time.

  • PDF

Freeway Capacity Estimation for Traffic Control (교통제어를 위한 고속도로 용량 산정에 관한 연구)

  • Kim, Jum-San;Kho, Seung-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.137-147
    • /
    • 2005
  • This study is to define new road capacity concept, and to develop and propose an estimation method, through the analysis of individual vehicular behaviors in continuum flow. Developments in detection technology enable various and precise traffic data collection. The U.S. HCM (Highway Capacity Manual) method does not require such various and precise traffic data, and outputs only limited results. Alternative capacity concepts, which can be classified into a stochastic model and behavioral or deterministic model, are attempts for modeling some prominent traffic flow features, namely so-called a capacity drop and a traffic hysteresis, using such various and precise traffic data. Yet, no capacity concept up-to-date can describe both features. The analysis of individual vehicular behaviors, including speed-density plot per time lap, traffic flow-speed-density diagram per each sampling interval, time headway distribution, and free flow speed distribution, is performed for overcoming the limits of the previous capacity concepts. A stochastic methods are applied to determine time headway for estimating freeway capacity for traffic control.

Comparative Part Load Performance Analysis of Gas Turbine Power Generation Systems Considering Exhaust Heat Utilization (배열 이용도를 고려한 가스터빈 발전시스템의 부분부하 성능 비교분석)

  • Kim, T. S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.290-297
    • /
    • 2002
  • This paper presents analysis results for the effect of power control strategies on the part load performance of gas turbine based power generation systems utilizing exhaust heat of the gas turbine such as cumbined cycle power plants and regenerative gas turbines. For the combined cycle, part load efficiency variations were compared among different single shaft gas turbines representing various technology levels. Power control strategies considered were fuel only control and IGV control. It has been observed that gas turbines with higher design performances exhibit superior part load performances. Improvement of part load efficiency by adopting air flow modulation was analyzed and it is concluded that since the average combined cycle performance is affected by the range of IGV control as well as its temperature control principle, a control strategy appropriate for the load characteristics of the individual plant should be adopted. For the regenerative gas turbine, it is likewise concluded that maintaining exhaust temperature as high as possible by air flow rate modulation is required to increase part load efficiency.

  • PDF