• 제목/요약/키워드: Individual dose

검색결과 351건 처리시간 0.022초

Evaluation of absorbed dose in monkey and mouse using 18F-FDG PET and CT density information

  • Kim, Wook;Lee, Yong Jin;Park, Yong Sung;Cho, Doo-Wan;Lee, Hong-Soo;Han, Su-Cheol;Kang, Joo Hyun;Woo, Sang-Keun
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.18-24
    • /
    • 2017
  • Patient-specific image-based internal dosimetry involves using the patient's individual anatomy and spatial distribution of radioactivity over time to obtain an absorbed dose calculation. Individual absorbed dose was calculated by accumulated activity multiply S-value of each organs. The aim of this study was to calculate the S-values using Monte Carlo simulation in monkey and mouse and evaluation of absorbed dose in each organ. Self-irradiation S-value of monkey heart self-irradiation was 3.15E-03 mGy-g/MBq-s, lung self-irradiation was 8.94E-04 mGy-g/MBq-s and liver self-irradiation S-value was 2.23E-03 mGy-g/MBq-s. Mouse heart self-irradiation S-value was 1.95E-01 mGy-g/MBq-s, lung was 9.59E-02 mGy-g/MBq-s, and liver was 1.40E-03 mGy-g/MBq-s. The results of this study show that the calculation protocol of image based individual absorbed dose of each organ using Monte Carlo simulation. Therefore, this study may be applied to calculate human specific absorbed dose.

Optimal Monitoring Intervals and MDA Requirements for Routine Individual Monitoring of Occupational Intakes Based on the ICRP OIR

  • Ha, Wi-Ho;Kwon, Tae-Eun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.88-94
    • /
    • 2020
  • Background: The International Commission on Radiological Protection (ICRP) has recently published report series on the occupational intakes of radionuclides (OIR) for internal dosimetry of radiation workers. In this study, the optimized monitoring program including the monitoring interval and the minimum detectable activity (MDA) of major radionuclides was suggested to perform the routine individual monitoring of internal exposure based on the ICRP OIR. Materials and Methods: The derived recording levels and the critical monitoring quantities were reviewed from international standards or guidelines by the International Atomic Energy Agency (IAEA), the International Organization for Standardization (ISO), and the European Radiation Dosimetry Group (EURADOS). The OIR data viewer provided by ICRP was used to evaluate the monitoring intervals and the MDA, which are derived from the reference bioassay functions and the dose coefficients. Results and Discussion: The optimal monitoring intervals were determined taking account of two requirement conditions on the potential intake underestimation and the MDA values. The MDA requirement values of the selected radionuclides were calculated based on the committed effective dose from 0.1 mSv to 5 mSv. The optimized routine individual monitoring program was suggested including the optimal monitoring intervals and the MDA requirements. The optimal MDA values were evaluated based on the committed effective dose of 0.1 mSv. However, the MDA can be adjusted considering the practical operation of the routine individual monitoring program in the nuclear facilities. Conclusion: The monitoring intervals and the MDA as crucial factors for the routine monitoring were described to suggest the optimized routine individual monitoring program of the occupational intakes. Further study on the alpha/beta-emitting radionuclides as well as short lived gamma-emitting nuclides will be necessary in the future.

일반병원과 치과병원과의 방사선 관계종사자 피폭선량 비교분석 (A Comparative Analysis of Exposure Doses between the Radiation Workers in Dental and General Hospital)

  • 양남희;정운관;동경래;최은진;주용진;송하진
    • 방사선산업학회지
    • /
    • 제9권1호
    • /
    • pp.47-55
    • /
    • 2015
  • Research and investigation is required for the exposure dose of radiation workers to work in the dental hospital as increasing interest in exposure dose of the dental hospital recently accordingly, study aim to minimize radiation exposure by making a follow-up study of individual exposure doses of radiation workers, analyzing the status on individual radiation exposure management, prediction the radiation disability risk levels by radiation, and alerting the workers to the danger of radiation exposure. Especially given the changes in the dental hospital radiation safety awareness conducted the study in order to minimize radiation exposure. This study performed analyses by a comparison between general and dental hospital, comparing each occupation, with the 116,220 exposure dose data by quarter and year of 5,811 subjects at general and dental hospital across South Korea from January 1, 2008 through December 31, 2012. The following are the results obtained by analyzing average values year and quarter. In term of hospital, average doses were significantly higer in general hospitals than detal ones. In terms of job, average doses were higher in radiological technologists the other workes. Especially, they showed statistically significant differences between radiological technologists than dentists. The above-mentioned results indicate that radiation workers were exposed to radiation for the past 5 years to the extent not exceeding the dose limit (maximum $50mSv\;y^{-1}$). The limitation of this study is that radiation workers before 2008 were excluded from the study. Objective evaluation standards did not apply to the work circumstance or condition of each hospital. Therefore, it is deemed necessary to work out analysis criteria that will be used as objective evaluation standard. It will be necessary to study radiation exposure in more precise ways on the basis of objective analysis standard in the furture. Should try to minimize the radiation individual dose of radiation workers.

Internal Dosimetry: State of the Art and Research Needed

  • Francois Paquet
    • Journal of Radiation Protection and Research
    • /
    • 제47권4호
    • /
    • pp.181-194
    • /
    • 2022
  • Internal dosimetry is a discipline which brings together a set of knowledge, tools and procedures for calculating the dose received after incorporation of radionuclides into the body. Several steps are necessary to calculate the committed effective dose (CED) for workers or members of the public. Each step uses the best available knowledge in the field of radionuclide biokinetics, energy deposition in organs and tissues, the efficiency of radiation to cause a stochastic effect, or in the contributions of individual organs and tissues to overall detriment from radiation. In all these fields, knowledge is abundant and supported by many works initiated several decades ago. That makes the CED a very robust quantity, representing exposure for reference persons in reference situation of exposure and to be used for optimization and assessment of compliance with dose limits. However, the CED suffers from certain limitations, accepted by the International Commission on Radiological Protection (ICRP) for reasons of simplification. Some of its limitations deserve to be overcome and the ICRP is continuously working on this. Beyond the efforts to make the CED an even more reliable and precise tool, there is an increasing demand for personalized dosimetry, particularly in the medical field. To respond to this demand, currently available tools in dosimetry can be adjusted. However, this would require coupling these efforts with a better assessment of the individual risk, which would then have to consider the physiology of the persons concerned but also their lifestyle and medical history. Dosimetry and risk assessment are closely linked and can only be developed in parallel. This paper presents the state of the art of internal dosimetry knowledge and the limitations to be overcome both to make the CED more precise and to develop other dosimetric quantities, which would make it possible to better approximate the individual dose.

음주 후의 혈중알코올농도 변화의 재현성에 관한 연구 (A study on the reproducibility of blood alcohol concentration - time profile of an individual)

  • 홍성욱
    • 분석과학
    • /
    • 제26권3호
    • /
    • pp.199-204
    • /
    • 2013
  • 본 연구에서는 음주 후 시간경과에 따른 혈중알코올농도 변화의 재현성을 실험하였다. 5명의 한국인 자원자에게 22%(v/v) 소주 한병(ethyl alcohol로 환산했을 경우 55.5 g)을 30분 안에 나눠 마시게 하는 실험을 5회 반복하였다. 자원자들에게는 안주로 회와 탕수육을 교대로 제공하였다. 알코올 섭취량과 섭취시간을 일정하게 유지했음에도 불구하고 혈중알코올농도가 최고에 이르는 시간과 그 때의 농도 및 시간경과에 따른 혈중알코올농도의 감소율은 사람에 따라 큰 차이를 보였다. 또한 안주에 따라서도 시간 변화에 따른 혈중알코올농도 변화곡선이 달라지는 것을 확인할 수 있었다. 동일인에게 5회에 걸쳐 각기 다른 날 동일한 조건으로 음주하게 한 후 혈중알코올농도 변화곡선을 관찰한 결과, 시간경과에 따른 혈중알코올농도변화는 재현성이 없이 나타나는 것을 확인하였다. 또한 특정 시간대의 혈중알코올농도를 정확하게 역추정하는 것은 불가능하다는 것을 알 수 있었다.

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • 제49권1호
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Individual Doses to the Public after the Fukushima Nuclear Accident

  • Ishikawa, Tetsuo
    • Journal of Radiation Protection and Research
    • /
    • 제45권2호
    • /
    • pp.53-68
    • /
    • 2020
  • Background: International organizations such as the World Health Organization (WHO) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported public exposure doses due to radionuclides released in the Fukushima nuclear accident a few years after the event. However, the reported doses were generally overestimated due to conservative assumptions such as a longer stay in deliberate areas designated for evacuation than the actual stay. After these reports had been published, more realistic dose values were reported by Japanese scientists. Materials and Methods: The present paper reviews those reports, including the most recently published articles; and summarizes estimated effective doses (external and internal) and issues related to their estimation. Results and Discussion: External dose estimation can be categorized as taking two approaches-estimation from ambient dose rate and peoples' behavior patterns-and measurements using personal dosimeters. The former approach was useful for estimating external doses in an early stage after the accident. The first 4-month doses were less than 2 mSv for most (94%) study subjects. Later on, individual doses came to be monitored by personal dosimeter measurements. On the basis of these measurements, the estimated median annual external dose was reported to be < 1 mSv in 2011 for 22 municipalities of Fukushima Prefecture. Internal dose estimation also can be categorized as taking two approaches: estimation from whole-body counting and estimation from monitoring of environmental samples such as radioactivity concentrations in food and drinking water. According to results by the former approach, committed effective dose due to 134Cs and 137Cs could be less than 0.1 mSv for most residents including those from evacuated areas. Conclusion: Realistic doses estimated by Japanese scientists indicated that the doses reported by WHO and UNSCEAR were generally overestimated. Average values for the first-year effective doses for residents in two affected areas (Namie Town and Iitate Village) were not likely to reach 10 mSv, the lower end of the doses estimated by WHO.

A feasibility study evaluating the relationship between dose and focal liver reaction in stereotactic ablative radiotherapy for liver cancer based on intensity change of Gd-EOB-DTPA-enhanced magnetic resonance images

  • Jung, Sang Hoon;Yu, Jeong Il;Park, Hee Chul;Lim, Do Hoon;Han, Youngyih
    • Radiation Oncology Journal
    • /
    • 제34권1호
    • /
    • pp.64-75
    • /
    • 2016
  • Purpose: In order to evaluate the relationship between the dose to the liver parenchyma and focal liver reaction (FLR) after stereotactic ablative body radiotherapy (SABR), we suggest a novel method using a three-dimensional dose distribution and change in signal intensity of gadoxetate disodium-gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) hepatobiliary phase images. Materials and Methods: In our method, change of the signal intensity between the pretreatment and follow-up hepatobiliary phase images of Gd-EOB-DTPA-enhanced MRI was calculated and then threshold dose (TD) for developing FLR was obtained from correlation of dose with the change of the signal intensity. For validation of the method, TDs for six patients, who had been treated for liver cancer with SABR with 45-60 Gy in 3 fractions, were calculated using the method, and we evaluated concordance between volume enclosed by isodose of TD by the method and volume identified as FLR by a physician. Results: The dose to normal liver was correlated with change in signal intensity between pretreatment and follow-up MRI with a median $R^2$ of 0.935 (range, 0.748 to 0.985). The median TD by the method was 23.5 Gy (range, 18.3 to 39.4 Gy). The median value of concordance was 84.5% (range, 44.7% to 95.9%). Conclusion: Our method is capable of providing a quantitative evaluation of the relationship between dose and intensity changes on follow-up MRI, as well as determining individual TD for developing FLR. We expect our method to provide better information about the individual relationship between dose and FLR in radiotherapy for liver cancer.

INSTORE : A PC-Based Database Program for Occupational Radiation Exposure of a Nuclear Power Plant

  • Cho, Yeong-Ho;Kang, Chang-Sun;Mun, Ju-Hyung;Kim, Hak-Su
    • Nuclear Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.308-317
    • /
    • 1998
  • Ensuring occupational radiation exposure(ORE) as low as is reasonably achievable(ALARA) has been one of very important requirements in a nuclear power plant. It is well known that about 70 percent of occupational dose has incurred from maintenance jobs in the outage period. To reduce occupational dose effectively, the high-dose jobs in the outage period should be identified with their dose reduction potentials and methods. In this study, a PC-based ORE database program, INSTORE, is developed to evaluate ORE doses in individual jobs, and the ORE data of Kori Units 3 and 4 are assembled to the database. Based on customary job classification, radiation work is classified into 26 main jobs which comprise 61 detailed jobs, and occupational doses are assessed according to each detailed job. As a result, high-dose jobs are identified with dose reduction priority in terms of collective ORE dose. It is recommended that adeqaute dose reduction methods for these jobs should be prepared to improve their working conditions and procedures.

  • PDF

연구로 1,2호기 해체 금속폐기물의 규제해제농도기준(안) 도출을 위한 연구 (A Study on the Clarance Level for the Metal Waste from the KRR-1 & 2 Decommissioning)

  • 홍상범;이봉재;정운수
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.660-664
    • /
    • 2003
  • 연구로 1,2호기 해체과정에서 발생되는 많은 양의 금속폐기물 중 자체처분대상 금속폐기물을 대상으로 재활용하는 경우에 대해서 피폭방사선량을 평가하고, 규제해제농도기준(안)을 도출하였다. 평가도구는 ,RESRAD-RECYCLE ver 3.06을 이용하여 ICRP60에서 제시하고 있는 유효선량 개념에 근거한 내부피폭 선량환산인자를 수정하였고, IAEA Safety Series III-P-1.1 및 NUREG-1640을 적용하여 예상되는 최대개인선량 및 집단선량을 평가하였다. 0.4Bq/g의 금속폐기물에 대한 RESRAD-RECYCLE 전산코드의 평가결과 개인최대선량 및 집단선량은 23.9 ${\mu}Sv/y$, 0.11 man$\cdot$Sv/y이다. 최종적인 핵종별 규제해제농도기준은 일반평가방법과 세부평가결과를 종합하여 가장 보수적인 평가결과를 추출하여 결정하였다. 그 결과 $Co^60$, $Cs^137$ 핵종에 대한 규제해제농도준위는 $1.67{\times}10_{-1}$ Bq/g미만이 되어야 국네 원자력법에서 정하고 있는 처분제한치(최대개인선량 : 10${\mu}Sv/y$, 집단선량 : 1man$\cdot$Sv/y)를 만족할 수 있다.

  • PDF