• Title/Summary/Keyword: Indium-Tin Oxide

Search Result 972, Processing Time 0.026 seconds

The effect on characteristic of ITO(glass) by polyimide thin film process (Polyimide 막 공정이 ITO Glass의 특성에 미치는 영향)

  • Kim, Ho-Soo;Kim, Han-Il;Jung, Soon-Won;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.857-860
    • /
    • 2002
  • The material that is both conductive in electricity and transparent to the visible-ray is called transparent conducting thin film. It has many field of application such as solar cell, liquid crystal display, transparent electrical heater, selective optical filter, and a optical electric device. In this study, indium tin oxide (ITO ; Sn-doped $In_2O_3$) thin films were deposited on $SiO_2$/soda-lime glass plates by a dc magnetron sputtering technique. The crystallinity and electrical properties of the films were investigated by X-ray diffraction(XRD), atomic force microscopy (AFM) scanning and 4-point probe. The optical transmittance of ITO films in the range of 300-1000nm were measured with a spectrophotometer. As a result, we obtained polycrystalline structured ITO films with (222), (400), and (440) peak. Transmittance of all the films were higher than 90% in the visible range.

  • PDF

Etch characteristics of ITO(Indium Tin Oxide ) using inductively coupled Ar/$CH_4$ plasmas (유도결합형 Ar/$CH_4$ 플라즈마를 이용한 ITO의 식각특성에 관한 연구)

  • 박준용;김현수;권광호;김곤호;염근영
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.565-571
    • /
    • 1999
  • In this study, high-density plasma etching characteristics of ITO(indium tin oxide) films used for transparent electrode in dispaly devices were investigated. Plasma diagnostic and surface analysis tools were used to understand etch reaction mechanism. The etch rate of ITO was increased by the increase of reactive radicals such as H and $CH_3$ with the addition of moderate amount of $CH_4$ to Ar. However, the addition of excess amount of $CH_4$ decreased possibly due to the increased polymer formation on the ITO surface being etched. The increase of source power and bias boltage increased ITO etch rates but it decreased selectivities over under-layers $(SiO_2, Si_3N_4)$. The increase of working pressure up to 20mTorr also increased ITO etch rates, however the further increased of the pressure decreased ITO etch rates. From the analysis of XPS, a peak related to the polymer of hydrocarbon was observed on the etched ITO surface especially for high $CH_4$ conditions and it appears to affect ITO etch rates.

  • PDF

Development and Characterization of Wearable Film-heaters Used in Thermotherapy for Senior Citizens (노인의 온열치료를 위한 웨어러블 면상발열체의 개발 및 특성 파악)

  • Yang, Kyungwhan;Cho, Kyoungah;Choi, June-Seek;Im, Kiju;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.412-415
    • /
    • 2016
  • In this study, we fabricated the wearable film-heaters used in thermotherapy for senior citizens and investigated the heat generation characteristics. The wearable film-heaters embedded into eco-flex were constructed with indium tin oxide (ITO) nanoparticles coated on glass fibers. Under a stretching strain of 30%, the wearable film-heaters stably operated with temperature variation of 10%. In addition, the wearable film-heater worn on the wrist increased the temperature of the wrist from $35^{\circ}C$ to $43^{\circ}C$ within 2 min.

The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition (스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1465-1468
    • /
    • 2010
  • The wet etching is a process using chemical solution and occurring chemical reaction on substrate surface. when we do wet etching process, we have to consider stoichiometry, etching time and temperature of etchant for good resolution. In this experiment, we used Cr, Al andIndium-tin-oxide (ITO) metal and we deposited them with DC sputtering machine. The Cr thin film metal thickness is about $1300{\AA}$, ITO films show a low electrical resistance and high transmittance in the visible range of an optical spectrum and Ai film is used for signal line. We measured and analysed wet etching properties on the metal thin films.

Improvement of Mchanical Property of Indium-tin-oxide Films on Polymer Substrates by using Organic Buffer Layer

  • Park, Sung-Kyu;Han, Jeong-In;Moon, Dae-Gyu;Kim, Won-Keun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • This paper gives the basic mechanical properties of indium-tin-oxide (ITO) films on polymer substrates which are exposed to externally and thermally induced bending force. By using modified Storney formula including triple layer structure and bulge test measuring the conductive changes of patterned ITO islands as a function of bending curvature, the mechanical stability of ITO films on polymer substrates was intensively investigated. The numerical analyses and experimental results show thermally and externally induced mechanical stresses in the films are responsible for the difference of thermal expansion between the ITO film and the substrate, and leer substrate material and its thickness, respectively. Therefore, a gradually ramped heating process and an organic buffer layer were employed to improve the mechanical stability, and then, the effects of the buffer layer were also quantified in terms of conductivity-strain variations. As a result, it is uncovered that a buffer layer is also a critical factor determining the magnitude of mechanical stress and the layer with the Young's modulus lower than a specific value can contribute to relieving the mechanical stress of the films.

Characteristics of ITO Thin Films on Polymeric Substrates with Oxygen Partial Pressure Ratio (산소분압비에 따른 고분자 기판 상에 ITO박막의 특성)

  • Kim, H.H.;Lee, Mu-Yeong;Kim, K.T.;Yoon, S.H;Park, D.H.;Park, C.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.849-852
    • /
    • 2004
  • Indium tin oxide (ITO) thin films on polymeric substrates such as acryl (AC), Poly carbornate (PC), polypropylene (PP), and polyethlene terephthalate (PET) have been deposited by a do reactive magnetron sputtering without heat treatments. Sputtering parameters is an important factor for high Qualify of ITO thin films prepared on polymeric substrates. Furthermore, the material, electrical and optical properties of as-deposited ITO films are dominated by the ratio of oxygen partial pressure. As the experimental results the surface roughness of ITO films becomes rough as the oxygen partial pressure Increases. The electrical resistivity of as-deposited ITO films decreases initially, and then increases with the increase of oxygen partial pressure. The optical transmittance at visible wavelength for all polymeric substrates is above 80%.

  • PDF

The optoelectrical properties of ITO/Ni/ITO films prepared with a magnetron sputtering (Magnetron sputtering을 이용한 ITO/Ni/ITO 박막의 전기광학적 특성 연구)

  • Chae, Joo-Hyun;Park, Ji-Hye;Kim, Dea-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.276-276
    • /
    • 2008
  • Transparent and conducting indium tin oxide (ITO) and ITO/Nickel/ITO(INI) multilayered films were prepared on glass substrates by a magnetron sputtering without intentional substrate heating. The RF(13.56MHz) and DC power were applied to ITO and Nickel target, respectively. The thickness of ITO, Ni and ITO films were kept constantly at 50, 5 and 45 nm. In order to consider the effect of post deposition vacuum annealing in vacuum on the physical and optoeletrical properties of INI films, optical transmittance, electrical resistivity, crystallinity of the films were analyzed. From the observed result, it may conclude that the optoelectrical properties of the INI films were dependent on the post deposition annealing. For the INI films annealed at $300^{\circ}C$, the films have a polycrystalline structure with (110), (200), (210), (211) and (300). The resistivity of the films were $4.0\times10^{-4}{\Omega}cm$ at room temperature. As the annealing($300^{\circ}C$), resistivity decreased to $2.8\times10^{-4}{\Omega}cm$. And also the optical transmittance decreased from 79 to 70 % at 550nm.

  • PDF

Quality Management of ITO Thin Film for OLED Based on Relationship of Fabrication and Characteristics (OLED용 ITO박막의 공정조건과 품질특성 추론에 근거한 품질관리)

  • Seo, Jeong-Min;Park, Keun-Young;Lee, Sang-Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2008
  • Recently, research on a flat panel display(FPD) has focused on organic light-emitting display(OLED) which has wide angle of view, high contrast ratio and low power consumption. ITO(Indium-Tin-Oxide) films are the most widely used material as a transparent electrode of OLED and also in many other display devices like LCD or PDP. The performance and efficiency of OLED is related to the surface condition of ITO coated glass substrate. The typical surface defect of glass substrate is measured for electric characteristics and physical condition for transmittance and roughness. Since ITO coated glass substrate can be destroyed for inspection about surface roughness, sheet resistance, film thickness and transmittance, precise fabrication condition should be made based on the estimated relationship. In this paper, ITO films were prepared on the commercial glass substrate by the Ion-Plating method changing the partial pressure of gas(Ar, 02) and the chamber temperature between $200^{\circ}C$ and $300^{\circ}C$. The characteristics of films were examined by the 4-point probe, supersonic thickness measurement, transmittance measurement and AFM. We estimated the relationship between processing parameters(Ar gas, O2 gas, Temperature) and properties of ITO films (Sheet Resistance, Film Thickness, Transmittance, Surface Roughness).

유기막 위에 증착된 저온 ITO(Indium Tin Oxide) 박막의 식각특성

  • 김정식;김형종;박준용;배정운;이내응;염근영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.99-99
    • /
    • 1999
  • 투명전도막인 Ito(Indium Tin Oxide)는 flat panel display 와 solar cell 같은 optoelectronic 이나 microelectronic device에서 널리 이용되어 지고 있다. 현재 상용화되고 있는 거의 대부분의 ITO 박막은 sputtering법에 의해 제조되고 있으나 공정상의 이유로 15$0^{\circ}C$이상의 기판온도가 요구되어진다. 그런, 실제 display device 제조공정에서는 비정질 실리콘 박막이나 유기막 위에 ITO박막을 제작할 필요성이 증대되어 지고 있고, 또한 다른 전자소자에 있어서도 상온 ITO 박막 형성 공정에 대한 필요성이 증대되고 있다. 이러한 이유로 본 실험에서는 IBAE(Ion Beam Assisted Evsporation)을 이용하여 저온 ITO박막을 유기막 위에 증착하는 공정에 대한 연구를 수행하였다. 이렇게 증착된 ITO 박막의 결정성은 비정질이었다. 또한, 모든 display device 제작에는 식각공정이 필수인데 기존에 사용되고 있는 wet etching 법은 등방성 식각특성 때문에 미세 pattern 형성에 부적합?, 따라서 비등방성 식각에 용이한 plasma etching법을 사용하여 저온 증착된 ITO 박막의 식각특성을 알아보았다. 실험에 사용된 식각장비는 자장 강화된 유도결합형 플라즈마 식각장비(MEICP)를 사용하였으며, 13.56MHz의 RF power를 사용하였다. 식각조건으로 source power는 600W~1000W, 기판 bias boltage는 -100V~-250V를 가하였으며, Ar, CH4, O2, H2, BCl3의 식각 gases, 5mTorr~30mTorr의 working pressure 변화 그리고 기판 온도에 따른 식각특성을 관찰하였다. ITO 가 증착된 기판으로는 유기물 중 투명전도성 박막에 기판으로서 사용가능성이 클 것으로 기대되어지는 PET(polyethylene-terephtalate), PC(polycarbonate), 아크릴을 사용하여 기판 변화가 식각특성에 미치는 영향에 대해서 각각 관찰하였다. 식각속도의 측정은 stylus profiler를 이용하여 측정하였으며 식각후에 표면상태는 scanning electron spectroscopy(SEM)을 이용하여 관찰하였다.

  • PDF

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes

  • Choi, Moon-Jeong;Jo, Kyung-Mi;Yang, Hae-Sik
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.24-28
    • /
    • 2012
  • The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.