Browse > Article
http://dx.doi.org/10.5229/JECST.2012.3.1.24

Effect of Thermal Treatment on the Electrocatalytic Activities and Surface Roughness of ITO Electrodes  

Choi, Moon-Jeong (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Jo, Kyung-Mi (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Yang, Hae-Sik (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.3, no.1, 2012 , pp. 24-28 More about this Journal
Abstract
The electrocatalytic activities and surface roughness of indium-tin-oxide (ITO) electrodes have been investigated after thermal treatment at 100, 150, or $200^{\circ}C$ for 30 min, 2 h, or 8 h. To check electrocatalytic activities, the electrochemical behavior of four electroactive species (p-hydroquinone, $Ru(NH_3){_6}^{3+}$, ferrocenemethanol, and $Fe(CN){_6}^{4-}$) has been measured. The electron transfer rate for p-hydroquinone oxidation and ferrocenemethanol oxidation increases with increasing the incubation temperature and the incubation period of time, but the rate for $Ru(NH_3){_6}^{3+}$ is similar irrespective of the incubation temperature and period because $Ru(NH_3){_6}^{3+}$ undergoes a fast outer-sphere reaction. Overall, the electrocatalytic activities of ITO electrodes increase with increasing the incubation temperature and period. The surface roughness of ITO electrodes increases with increasing the incubation temperature, and the thermal treatment generates many towering pillars as high as several tens of nanometer.
Keywords
Indium-tin-oxide electrode; Thermal treatment; Electrocatalytic activity; p-hydroquinone; $Ru(NH_3){_6}^{3+}$; ferrocenemethanol; $Fe(CN){_6}^{4-}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur and H. Morkoc, Superlatt. Microstruc., 48, 458 (2010).   DOI   ScienceOn
2 A. N. Asanov, W. W. Wilson and P. B. Oldham, Anal. Chem., 70, 1156 (1998).   DOI   ScienceOn
3 I. Zudans, J. R. Paddock, H. Kuramitz, A. T. Maghasi, C. M. Wansapura, S. D. Conklin, N. Kaval, T. Shtoyko, D. J. Monk, S. A. Bryan, T. L. Hubler, J. N. Richardson, C. J. Seliskar and W. R. Heineman, J. Electroanal. Chem., 565, 311 (2004).   DOI   ScienceOn
4 S.-G. Sun, W.-B. Cai, L.-J. Wan and M. Osawa, J. Phys. Chem. B, 103, 2460 (1999).
5 L. D. Burke, L. M. Hurley, V. E. Lodge and M. B. Mooney, J. Solid State Electrochem., 5, 250 (2001).   DOI   ScienceOn
6 N. V. Krstajic, L. M. Vracar, V. R. Radmilovic, S. G. Neophytides, M. Labou, J. M. Jaksic, R. Tunold, P. Falaras and M. M. Jaksic, Surf. Sci., 601, 1949 (2007).   DOI   ScienceOn
7 R. C. Orellana, M. E. Martins and A. J. Arvía, Electrochim. Acta, 24, 469 (1979).   DOI   ScienceOn
8 V. Bhalla, S. Carrara, C. Stagni and B. Samorì, Thin Solid Films, 518, 3360 (2010).   DOI   ScienceOn
9 J. Kang and P. A. Rowntree, Langmuir, 23, 509 (2007).   DOI   ScienceOn
10 R. L. McCreery, Chem. Rev., 108, 2646 (2008).   DOI   ScienceOn
11 M. Panizza and G. Cerisola, Electrochim. Acta, 51, 191 (2005).   DOI   ScienceOn
12 S. Gardonio, L. Gregoratti, D. Scaini, C. Castellarin- Cudia, P. Dudin, P. Melpignano, V. Biondo, R. Zamboni, S. Caria and M. Kiskinova, Org. Electron., 9, 253 (2008).   DOI   ScienceOn
13 C. Haensch, S. Hoeppener and U. S. Schubert, Chem. Soc. Rev. 39, 2323 (2010).   DOI   ScienceOn
14 A. M. Nowicka, U. Hasse, G. Sievers, M. Donten, Z. Stojek, S. Fletcher and F. Scholz, Angew. Chem. Int. Ed., 49, 3006 (2010).   DOI   ScienceOn
15 P. Chen and R. L. McCreery, Anal. Chem., 68, 3958 (1996).   DOI   ScienceOn
16 K. Jo, H.-Z. Yu and H. Yang, Electrochim. Acta, 56, 4828 (2011).   DOI   ScienceOn
17 J. Das, K. Jo, J. W. Lee and H. Yang, Anal. Chem., 79, 2790 (2007).   DOI   ScienceOn
18 M. R. Akanda, Y.-L. Choe and H. Yang, Anal. Chem., 84, 1049 (2012).   DOI   ScienceOn