• 제목/요약/키워드: Indium thin oxide(ITO)

검색결과 338건 처리시간 0.031초

ECR을 이용한 ${SF_6}/{O_2}$ 가스 플라즈마에 의한 ITO의 식각 특성연구 (Etch characteristics of ITO(Indium Tin Oxide)using ${SF_6}/{O_2}$-gas ECR(Electron Cyclotron Resonance) plasmas)

  • 권광호;강승열;김곤호;염근영
    • 한국전기전자재료학회논문지
    • /
    • 제13권7호
    • /
    • pp.563-567
    • /
    • 2000
  • We presented the etch results of indium-tin oxide thin films by using SF$_{6}$/O$_2$gas electron cyclotron resonance plasma and conducted X-ray phtoelectron spectroscopy and quadrupole mass spectrometer analyses for the etch characteristics. The etch rate of the films was greatly dependent on that of oxygen which was the major constituent element of the films. The oxygen was removed by the forms like $O_2$or SOF$_2$. We examined the ratio of atomic content of O and In and the change of this ratio was related to the removal rate of InF$_{x}$ and the S-metal bonding.ing.

  • PDF

분말타겟의 dc 마그네트론 스퍼터에 의한 ITO박막의 특성 (Characteristics of ITO Films Deposited by dc Magnetron Sputter Using Powder Target)

  • 김현후;신성호;신재혁;박광자
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.427-431
    • /
    • 2000
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) and glass substrates have been deposited by a dc magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by sputtering power, oxygen partial pressure and films thickness. As the experimental results, the XRD patters of ITO films are influenced by sputtering power and pressure. As the power and pressure are increased, (411) peak is grown suddenly. the electrical resistivity is also increased, as the sputteing power and pressure are increased. Transmittance of ITO thin films in visible light ranges is lowered with increasing the sputtering power and film thickness. Reflectance of ITO films in infia-red region is decreased, as the power and pressure is increased.

  • PDF

상온에서 분말타겟의 스퍼터에 의해 증착된 ITO박막 (ITO Films Deposited by Sputter Method of Powder Target at Room Temperature.)

  • 김현후;이재형;신성호;신재혁;박광자
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.349-355
    • /
    • 2000
  • Indium tin oxide (ITO) thin films have been deposited on PET (polyethylene terephthalate) and glass substrates by a do magnetron sputter method of powder target without heat treatments such as substrate heater and post heat treatment. During the sputtering deposition, sputtering parameters such as sputtering power, working pressure, oxygen gas mixture, film thickness and substrate-target distance are important factors for the high quality of ITO thin films. The structural, electrical and optical properties of as-deposited ITO oxide films are investigated by sputtering power, oxygen partial pressure and films thickness among the several sputtering conditions. XRD patterns of ITO films are affected by sputtering power and pressure. As the power and pressure are increased, (411) and (422) peaks of ITO films are grown strongly. Electrical resistivity is also increased, as the sputtering power and pressure are increased. Transmittance of ITO thin films in the visible light ranges is lowered with an increase of sputtering power and film thickness. Reflectance of ITO films in infra-red region is decreased, as the power and pressure is increased.

  • PDF

증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향 (Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films)

  • 박성환;하기룡
    • 공업화학
    • /
    • 제21권2호
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conducting oxide (TCO) 박막은 평판 디스플레이 산업에 널리 사용되고 있다. 화학적으로 우수한 투명전도성 Indium Zinc Oxide (IZO) 필름은 Indium Tin Oxide (ITO) 필름의 대체 물질로 관심을 끌고 있다. 본 연구에서는 90 : 10 wt%의 $In_2O_3$와 ZnO를 혼합하여 만든 타겟으로 전자빔 증착법을 이용하여 polynorbornene (PNB) 기판 위에 IZO 박막을 제조하였다. UV/Visible spectrophotometer, 4-Point Probe를 이용하여 증착 두께와 산소도입 속도에 따른 IZO 필름의 전기적 및 광학적 특성을 연구하였으며, SEM, XRD 및 XPS를 이용하여 증착된 IZO의 구조적 특성 및 표면조성비를 연구하였다.

유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착 (Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering)

  • 구범모;정승재;한영훈;이정중;주정훈
    • 한국표면공학회지
    • /
    • 제37권3호
    • /
    • pp.146-151
    • /
    • 2004
  • Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

DC magnetron sputtering 방법으로 형성한 Indium-Tin-Oxide(ITO) 박막의 특성 연구 (A Study on the Properties of Indium-Tin-Oxide(ITO) Films Deposited by DC magnetron sputtering method)

  • 안명환
    • 한국정보통신학회논문지
    • /
    • 제10권3호
    • /
    • pp.473-478
    • /
    • 2006
  • DC 마그네트론 스퍼터링 방법으로 ITO 박막을 형성하였다. 박막 형성 시 스퍼터 전압을 변화시켜 음이온에 의한 손상을 최소화하였으며, 또한 기판온도와 산소유입량을 변화시켜 비저항 $1.6\times10^{-4}{\Omega}cm$, 광투과도 90% 이상의 값을 갖는 양질의 박막을 형성 할 수 있었다. 박막 형성 시 $O_2$ 가스의 유량이 4sccm 이상으로 산소공급이 과다할 경우는 ITO 박막의 비저항이 증가하고, 광 투과도가 포화됨을 알 수 있었다.

스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율 (The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition)

  • 허창우
    • 한국정보통신학회논문지
    • /
    • 제14권6호
    • /
    • pp.1465-1468
    • /
    • 2010
  • 습식 식각은 식각용액으로서 화학용액을 사용하는 공정으로 반응물이 기판표면에서 화학반응을 일으켜 표면을 식각하는 과정이다. 습식 식각 시 수${\mu}m$의 해상도를 얻기 위해서는 그 부식액의 조성이나, 에칭시간, 부식액의 온도 등을 고려하여야 한다. 본 실험에서 사용한 금속은 Cr, Al, ITO 로 모두 DC sputter 방법을 사용해서 증착하여 사용하였다. Cr박막은 $1300{\AA}$ 정도의 두께를 사용하였고, ITO (Indium Tin Oxide) 박막은 가시광 영역에서 투명하고 (80% 이상의 transmittance), 저저항 (Sheet Resistance : $50\;{\Omega}/sq$ 이하) 인 박막을 사용하였으며, 신호선으로 주로 사용되는 Al등의 증착조건에 따른 wet etching 특성을 조사하였다.

플라즈마 표면 처리에 의한 ITO 박막 제작 특성 (Characteristic of ITO thin film with plasma surface treatment)

  • 김상모;손인환;박상준;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.404-405
    • /
    • 2007
  • Tin-doped indium thin film is outstanding material among transparent Conductive Oxide (TCO) materials. ITO thin films show a low electrical resistance(<$10^{-4}\;[{\Omega}{\cdot}m]$) and high transmittance(>80%) in the visible range. ITO thin films usually have been deposited on the glass substrate. In order to apply flexible display, the substrate should have the ability to bend and be deposited without substrate heat. Also properties of ITO thin film depend on what kind of substrate. In this study, we prepared ITO thin film on the polycarbonate (PC) substrate by using Facing Target Sputtering (FTS) system. Before deposition of ITO thin film, PC substrate took plasma surface treatment. The electrical and surface properties of as-deposited thin films were investigated by Hall Effect measurement, UV/VIS spectrometer and the surface property of substrate is investigated by Contact angle measurement.

  • PDF

Effect of Silver Nanoparticles with Indium Tin Oxide Thin Layers on Silicon Solar Cells

  • Oh, Gyujin;Kim, Eun Kyu
    • Applied Science and Convergence Technology
    • /
    • 제26권4호
    • /
    • pp.91-94
    • /
    • 2017
  • AThe effect of localized surface plasmon on silicon substrates was studied using silver nanoparticles. The nanoparticles were formed by self-arrangement through the surface energy using rapid thermal annealing (RTA) technique after the thin nanolayer of silver was deposited by thermal evaporation. By the theoretical calculation based on Mie scattering and dielectric function of air, indium tin oxide (ITO), and silver, the strong peak of scattering cross section of silver nanoparticles was found at 358 nm for air, and 460 nm for ITO, respectively. Accordingly, the strong suppression of reflectance under the condition of induced light of $30^{\circ}$ occurred at the specific wavelength which is almost in accordance with peak of scattering cross section. When the external quantum efficiency was measured using silicon solar cells with silver nanoparticles, there was small enhancement peak near the 460 nm wavelength in which the light was resonated between silver nanoparticles and ITO.

An ITO/Au/ITO Thin Film Gas Sensor for Methanol Detection at Room Temperature

  • Jeong, Cheol-Woo;Shin, Chang-Ho;Kim, Dae-Il;Chae, Joo-Hyun;Kim, Yu-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • 제11권2호
    • /
    • pp.77-80
    • /
    • 2010
  • Indium tin oxide (ITO) films with a 5 nm thick Au interlayer were prepared on glass substrates. The effects of the Au interlayer on the gas sensitivity for detecting methanol vapors were investigated at room temperature. The conductivity of the film sensor increased upon exposure to methanol vapor and the sensitivity also increased proportionally with the methanol vapor concentration. In terms of the sensitivity measurements, the ITO film sensor with an Au interlayer shows a higher sensitivity than that of the conventional ITO film sensor. This approach is promising in gaining improvement in the performance of ITO gas sensors used for the detection of methanol vapor at room temperature.