Low Temperature Deposition of ITO Thin Films for Flat Panel Displays by ICP Assisted DC Magnetron Sputtering

유도결합 플라즈마(ICP) Sputtering에 의한 평판 디스플레이(FPD)용 ITO 박막의 저온 증착

  • Published : 2004.06.01

Abstract

Indium tin oxide (ITO) is widely used to make a transparent conducting film for various display devices and opto-electric devices. In this study, ITO films on glass substrate were fabricated by inductively coupled plasma (ICP) assisted dc magnetron sputtering. A two-turn rf coil was inserted in the process chamber between the substrate and magnetron for the generation of ICP. The substrates were not heated intentionally. Subsequent post-annealing treatment for as-deposited ITO films was not performed. Low-temperature deposition technique is required for ITO films to be used with heat sensitive plastic substrates, such as the polycarbonate and acrylic substrates used in LCD devices. The surface roughness of the ITO films is also an important feature in the application of OLEDs along with the use of a low temperature deposition technique. In order to obtain optimum ITO thin film properties at low temperature, the depositions were carried out at different condition in changing of Ar and $O_2$ gas mixtures, ICP power. The electrical, optical and structural properties of the deposited films were characterized by four-point probe, UV/VIS spectrophotometer, atomic force microscopy(AFM) and x-ray diffraction (XRD). The electrical resistivity of the films was -l0$^{-4}$ $\Omega$cm and the optical transmittance in the visible range was >85%. The surface roughness ( $R_{rms}$) was -20$\AA$.>.

Keywords

References

  1. J. F. Nierengarten, G. Hadziioannou, N. Armaroli,Mater. Today, 4(3) (2001) 6
  2. T. J. Vink, W. Walrave, J. L. C. Daams, P. C.Baarslag, J. E. A. M. van den Meerakker. ThinSolid Films, 266 (1995) 145 https://doi.org/10.1016/0040-6090(95)06818-X
  3. H. Enoki, J. Echigoya, H. Suto, J. Mater. Sci, 26(1991) 4110-4115 https://doi.org/10.1007/BF02402954
  4. Yoichi Hoshi, Takakazu Kiyomura, Thin Solid Films411 (2002) 36 https://doi.org/10.1016/S0040-6090(02)00170-0
  5. C. Nunes de Carvalho, A. Luis, 0. Conde, E.Fortunato, G. Lavareda, A. Amaral, J. Non-Cryst.Solids, 299-302 (2002) 1208 https://doi.org/10.1016/S0022-3093(01)01140-1
  6. H. Kim, J. S. Horwitz, G. Kushto, A. Pique, Z. H. Kafafi, C. M. Gilmore, D. B. Chrisey, J. Appl.Phys., 88 (2000) 6021 https://doi.org/10.1063/1.1318368
  7. Dale E. Mortan, Andrea Dinca, Vacuum Technol. Coat., (2000) 53
  8. A. Suzuki, T. Matsushita, T. Aoki, A. Mori, MOkuda, Thin Solid Films, 411 (2002) 23 https://doi.org/10.1016/S0040-6090(02)00167-0
  9. J. H. Shin, S. H. Shin, J. I. Park, J. Appl. Phys.,89 (2001) 5199-5203 https://doi.org/10.1063/1.1357470
  10. H. D. Na, H. S. Park, D. H. Jung, G. R. Lee, J.H. Joo, J. J. Lee, Surf. Coat. Technol., 169-170(2003) 41 https://doi.org/10.1016/S0257-8972(03)00071-9
  11. Y. H. Han, S. J. Jung, J. J. Lee, J. H. Joo, Surf.Coat. Technol., 174-175 (2003) 235 https://doi.org/10.1016/S0257-8972(03)00619-4
  12. C. H. Jonda, A. B. R. Mayer, U. Stolz, J. Mater. Sci., 35 (2000) 5645 https://doi.org/10.1023/A:1004842004640
  13. C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O.Jung, W. J. Lee, W. S. Kim, S. J. Kim, C. Yoon,Thin Solid Films, 258 (1995) 274-278 https://doi.org/10.1016/0040-6090(94)06354-0
  14. W. Wu, B. Chiou, Thin Solid Films, 247 (1994) 201 https://doi.org/10.1016/0040-6090(94)90800-1
  15. M. Kamei, Y. Shigesato, S. Takaki, Thin Solid Films,259 (1995) 38 https://doi.org/10.1016/0040-6090(94)06390-7