• Title/Summary/Keyword: Indium oxide

Search Result 1,235, Processing Time 0.029 seconds

Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review (고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰)

  • Park, Hyeongsik;Kim, Youngkuk;Oh, Donghyun;Pham, Duy Phong;Song, Jaechun;Yi, Junsin
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

Indium-Zinc Oxide Thin Film Transistors Based N-MOS Inverter (Indium-Zinc 산화물 박막 트랜지스터 기반의 N-MOS 인버터)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.7
    • /
    • pp.437-440
    • /
    • 2017
  • We report on amorphous thin-film transistors (TFTs) with indium zinc oxide (IZO) channel layers that were fabricated via a solution process. We prepared the IZO semiconductor solution with 0.1 M indium nitrate hydrate and 0.1 M zinc acetate dehydrate as precursor solutions. The solution- processed IZO TFTs showed good performance: a field-effect mobility of $7.29cm^2/Vs$, a threshold voltage of 4.66 V, a subthreshold slope of 0.48 V/dec, and a current on-to-off ratio of $1.62{\times}10^5$. To investigate the static response of our solution-processed IZO TFTs, simple resistor load-type inverters were fabricated by connecting a $2-M{\Omega}$ resistor. Our IZOTFTbased N-MOS inverter performed well at operating voltage, and therefore, isa good candidate for advanced logic circuits and display backplane.

Effect of annealing temperature on amorphous indium zinc oxide thin films prepared by a sol-gel spin-coating method

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • Transparent conductive indium zinc oxide thin films were prepared by spin-coating a sol-gel solution. Zinc acetate dihydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] and indium acetate [In$(CH_3COO)_3$] were used as starting precursors, and 2-methoxyethanol with 1-propanol as solvents. Upon annealing in a temperature range from 500 to $1000^{\circ}C$, the thin film crystallizes into polycrystalline $In_2O_3$(ZnO). The lowest electrical resistivity was obtained at an annealing temperature of $700^{\circ}C$ as $2{\Omega}{\cdot}cm$. Average optical transmittances were higher than 80% at all annealing temperatures. These experimental results confirm that the sol-gel spin-coating can be a good simplified practical method for forming transparent electrodes.

Hydrothermal Synthesis of Indium Tin Oxide Nanoparticles without Chlorine Contamination

  • Wang, Hai Wen;Xu, Guo Dong;Zhang, Jian Rong;Yin, Xin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1999-2003
    • /
    • 2014
  • Indium tin oxide ($In_2Sn_{1-x}O_{5-y}$) nanoparticles were synthesized by hydrothermal method from stable indium tin acetylacetone complexes and postannealing at $600^{\circ}C$. The absence of chlorine ions shortened the synthesis process, decreased the particle agglomeration and improved the particle purity. The introduced complexing ligand acetylacetone decreased the obtained nanoparticle size. The improved powder properties accelerated the sintering of the $In_2Sn_{1-x}O_{5-y}$ nanoparticles and reached a relative density of 96.4% when pressureless sintered at $1400^{\circ}C$.

Hyper Neutral Beam System for Damage Free Deposition of Indium-Tin Oxide Thin Films at Room Temperature

  • Yoo, Suk-Jae;Kim, Dae-Chul;Kim, Jong-Sik;Oh, Kyoung-Suk;Lee, Bong-Ju;Choi, Soung-Woong;Park, Young-Chun;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.190-192
    • /
    • 2007
  • A neutral beam system has been developed to produce hyperthermal neutral beams composed of indium, tin, and oxygen atoms. Using these hyper thermal neutral beams with energies in the range of tens of eV, high quality indium-tin oxide (ITO) thin films have been obtained on glass substrates at room temperature. The optical transmittance of the films is higher than 85% at a wavelength of 550 nm and the electrical resistivity is lower than $1{\times}10^{-3}{\Omega}cm$.

  • PDF

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF