• Title/Summary/Keyword: Indirect vector control

Search Result 122, Processing Time 0.023 seconds

Vector Control of Induction Motor using Matlab/Simulink and DS 1104 (Matlab/Simulink와 DS1104를 이용한 유도 전동기 벡터제어)

  • Im, Jong-Bin;Go, Sung-Chul;Bae, Jae-Nam;Kang, Dong-Woo;Cho, In-Hae;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.657-658
    • /
    • 2008
  • This paper presents a impletation of vector control of induction motor using Matlab/Simulink and dSPACE DS1104. System consists of digital input block, digital ouput block, ADC block, protection block, motor control block and PWM block. It is applied indirect vector control and PI controller to speed controller and current controller.

  • PDF

A New-Generation Sensorless Vector Control Scheme for Induction Motor Drive

  • Shinnaka, Shinji
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.287-292
    • /
    • 1998
  • This paper presents some results of performance evaluation test via actual machines of a new hybrid vector control utilizing a new indirect orientation scheme and stable filter embedded direct orientation scheme for induction motors without speed or position sensor. It is shown through the test by 0.3(kW) and 3.7(kW) motors that the proposed sensorless vector control has the following high potentialities: 1) speed range is 0 to 600(rad/s) or more, 2) zero-speed command is accepted and settles the machines at a stable standstill with no vibration 3) it can make machines to track variable command of acceleration and deceleration $\pm$6,000(rad/s2), 4) it can make machines to drive directly load of at least 26 times larger inertia than that of the machine, 5) it can make machines to produce much larger torque than the rating in torque control mode even at standstill. The performance confirmed by the test is far away for previous schemes or sensorless drive apparatuses.

  • PDF

A Study on Deduction of Equivalent Circuit Parameters and Verification of Control Algorithm of Thrust Force of a Small-scaled LIM for a Railway Transit (철도차량용 선형유도전동기 축소형 모델의 등가회로 파라미터 도출 및 추진력 제어 알고리즘 검증 연구)

  • Park, Chan-Bae;Mok, Hyung-Soo;Lee, Ju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1248-1254
    • /
    • 2010
  • Authors conducted a deduction of some parameters using the magnetic equivalent circuit method and a verification study of the thrust force control algorithm of a rotary-typed small-scaled linear induction motor for a railway transit. In a LIM, it is possible to express the parameters of the magnetic equivalent circuit into a function of the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. It means that the LIM properties can be changed considerably by the shape of the secondary aluminium plate and the airgap between the LIM primary core and the secondary aluminium plate. So, authors analyzed a tendency of changes of the magnetic equivalent circuit parameters and the LIM characteristics by changing of the airgap of the secondary aluminium plate of a rotary-typed small-scaled LIM. And authors conducted a verification study of the indirect vector control algorithm with constant slip frequency by using the rotary-typed small-scaled LIM tester set on the basis of the calculated LIM parameters. Finally authors accomplished a research on applicability for LIM railway transit.

Low speed Drive of Induction Motors Using Space vector PWM Method (공간전압벡터 PWM방식을 이용한 유도전동기의 저속운전)

  • Seo, Young-Soo;Kim, Young-Chun;Ha, Jong-Wook;Song, Ho-Bin
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2171-2173
    • /
    • 1997
  • In this paper space vector PWM method is proposed to implement an indirect vector control for an induction motor with excellent dynamic stability and performance in a very low speed resin. The proposed method can detect the instantaneous speed in very low speed resin and a speed control system with robustness to the load disturbance, modeling error, and measured noise is suggest to decrese their influence on the control system.

  • PDF

A Study on Parameter Sensitivity in Vector Control AC motor Drive (벡터제어 교류전동기 구동의 파라메터 민감도에 관한 연구)

  • Park, Min-Ho;Kim, Young-Real;Won, Chung-Yuen;Kim, Tae-Hoon;Kim, Back-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.616-621
    • /
    • 1989
  • This paper describes newly developed high performance control system for vector controlled induction motor. In order to realize this system, the authors are adopted the current controlled PWM inverter with hysteresis controller. A priori knowledge of the motor parameters is need in order to implement indirect vector control on induction motor drive systems where the position of rotor flux is estimated. This paper presents some of the relevant mathematics necessary to study parameter sensitivity in induction motor servo system. Simulation results demonstrate the predicted performance.

  • PDF

Adaptive Vector Control for Induction Motor Using Parameter Estimation (매개변수 추정에 의한 유도전동기의 적응 벡터제어)

  • Lee, Y.J.;Kim, H.J.;Oh, W.S.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.363-366
    • /
    • 1990
  • In the indirect vector control method, the rotor resistance variation caused by operating temperature change is an undesirable nature. A new adaptation algorithm to compensate for the rotor resistance change based on the on-line estimation of field vector which requires the measurements of stator voltage and rotor speed is presented in this paper. Also minimum variance controller is presented for the adaptive control performance. This algorithm has been tested by simulating the induction machine using a digital computer and the results are discussed.

  • PDF

A Self-Tuning Fuzzy Speed Control Method for an Induction Motor (벡터제어 유도전동기의 자기동조 퍼지 속도제어 기법)

  • Kim, Dong-Shin;Han, Woo-Yong;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1111-1113
    • /
    • 2003
  • This paper proposes an effective self-turning algorithm based on Artificial Neural Network (ANN) for fuzzy speed control of the indirect vector controlled induction motor. Indirect vector control method divides and controls stator current by the flux and the torque producing current so that the dynamic characteristic of induction motor may be superior. However, if motor parameter changes, the flux current and the torque producing one's coupling happens and deteriorates the dynamic characteristic. The fuzzy speed controller of an induction motor has the robustness over the effect of this parameter variation than a conventional PI speed controller in some degree. This paper improves its adaptability by adding the self-tuning mechanism to the fuzzy controller. For tracking the speed command, its membership functions are adjusted using ANN adaptation mechanism. This adaptability could be embodied by moving the center positions of the membership functions. Proposed self-tuning method has wide adaptability than existent fuzzy controller or PI controller and is proved robust about parameter variation through Matlab/Simulink simulation.

  • PDF

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Speed Control of Induction Motor Using Load Torque Feedforward Control (부하토크 피드포워드 제어를 이용한 유도전동기의 속도제어)

  • 서영수;임영배;김영춘;성대용;김종균
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.152-155
    • /
    • 1997
  • This thesis proposed a speed control system for induction motors robust to variations in torque and parameters by feedforward compensating the current portion of load torque, adding a load torque observer to the conventional PI controller in the indirect vector controlled induction motor system. In conclusion, this thesis demonstrate the improved transient characteristic to variations in reference speed and load torque, compared to the conventional PI control method, by means of the feedworward control of the estimated load torque.

  • PDF

Efficiency Optimization Control of Induction Motor System using Fuzzy Control (퍼지제어를 이용한 유도전동기 시스템의 효율 최적화 제어)

  • Chung, Dong-Hwa;Park, Gi-Tae;Lee, Hong-Gyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.318-324
    • /
    • 2001
  • Efficiency optimization of an indirect vector controlled induction motor drive is proposed. The loss models are used in the validation of the fuzzy logic based on-line efficiency optimization control. At steady state, the fuzzy controller adaptively changes the excitation current on the basis of measured input power, until the maximum efficiency point is reached. The pulsating torque, due to flux reduction, has been compensated by an ingenious feedforward scheme. During transient state, rated flux is established to get the best transient response. Through a comprehensive simulation study, the results confirmed the validity of the proposed method.

  • PDF