• Title/Summary/Keyword: Index Structure

Search Result 2,931, Processing Time 0.028 seconds

Temperature Stabilization of Group Index in Silicon Slotted Photonic Crystal Waveguides

  • Aghababaeian, Hassan;Vadjed-Samiei, Mohammad-Hashem;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.398-402
    • /
    • 2011
  • In this paper, we have proposed a principle to design wideband, low dispersion and temperature stabilized slow light structure in slotted photonic crystal waveguide (SPCW). The infiltration of the silicon photonic crystal with polymer will enhance the slow light and increase the group index, whereas the different signs of thermo-optic coefficients of polymer and silicon make the proposed structure stable on temperature variation over $60^{\circ}C$ and improves the group index-bandwidth products of the designed structure. The SPCW structure is modified to maximize the slow light effect and minimize the dependence of the group index and hence the group velocity dispersion to temperature.

Performance Evaluation of SSD-Index Maintenance Schemes in IR Applications

  • Jin, Du-Seok;Jung, Hoe-Kyung
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.377-382
    • /
    • 2010
  • With the advent of flash memory based new storage device (SSD), there is considerable interest within the computer industry in using flash memory based storage devices for many different types of application. The dynamic index structure of large text collections has been a primary issue in the Information Retrieval Applications among them. Previous studies have proven the three approaches to be effective: In- Place, merge-based index structure and a combination of both. The above-mentioned strategies have been researched with the traditional storage device (HDD) which has a constraint on how keep the contiguity of dynamic data. However, in case of the new storage device, we don' have any constraint contiguity problems due to its low access latency time. But, although the new storage device has superiority such as low access latency and improved I/O throughput speeds, it is still not well suited for traditional dynamic index structures because of the poor random write throughput in practical systems. Therefore, using the experimental performance evaluation of various index maintenance schemes on the new storage device, we propose an efficient index structure for new storage device that improves significantly the index maintenance speed without degradation of query performance.

A Space Partitioning Based Indexing Scheme Considering, the Mobility of Moving Objects (이동 객체의 이동성을 고려한 공간 분할 색인 기법)

  • Bok, Kyoung-Soo;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.33 no.5
    • /
    • pp.495-512
    • /
    • 2006
  • Recently, researches on a future position prediction of moving objects have been progressed as the importance of the future position retrieval increases. New index structures are required to efficiently retrieve the consecutive positions of moving objects. Existing index structures significantly degrade the search performance of the moving objects because the search operation makes the unnecessary extension of the node in the index structure. To solve this problem, we propose a space partition based index structure considering the mobility of moving objects. To deal with the overflow of a node, our index structure first merges it and the sibling node. If it is impossible to merge them, our method splits the overflow node in which moving properties of objects are considered. Our index structure is always partitioned into overlap free subregions when a node is split. Our split strategy chooses the split position by considering the parameters such as velocities, the escape time of the objects, and the update time of a node. In the internal node, the split position Is determined from preventing the cascading split of the child node. We perform various experiments to show that our index structure outperforms the existing index structures in terms of retrieval performance. Our experimental results show that our proposed index structure achieves about $17%{\sim}264%$ performance gains on current position retrieval and about $107%{\sim}19l%$ on future position retrieval over the existing methods.

Data Structure Modeling for the LCC Analysis of the Plate Girder Bridge Considering Corrosion (부식을 고려한 판형교의 LCC 분석 데이터구조 설계)

  • Kim, Dong-Hyun;Kim, Bong-Geun;Lee, Sang-Ho
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.497-500
    • /
    • 2007
  • Data structure was designed not only to estimate LCC but also to analyze time-variant reliability index of plate girder bridges. Information model for data structure was categorized into cost information, cost variable information, user cost information, and reliability analysis information according to the characteristic of data. EXPRESS language of STEP was adopted to describe the data structure for the electronic representation of LCC information. The suitability of the developed data structure was verified by estimating LCC and analyzing time-variant reliability index of a plate girder bridge considering corrosion on the basis of the constructed test database.

  • PDF

The Influence of Industrial Structure Upgrading on Carbon Emission Efficiency in China

  • Song, Luyan
    • The Journal of Industrial Distribution & Business
    • /
    • v.10 no.2
    • /
    • pp.7-15
    • /
    • 2019
  • Purpose - The industrial structure upgrading can play an important role in promoting the carbon emission efficiency. Thus, this paper attempts to study the impact of industrial structure upgrading on carbon emission efficiency in order to reduce carbon emissions. Research design, data, and methodology - This paper selects panel data of 30 provinces and municipalities (autonomous regions) in China from 2001 to 2016, and divides them into three regions. The Moore index is used to measure the industrial structure upgrading, the non-radial SBM model based on undesired output is used to measure the slack variable to calculate the total factor carbon emission efficiency. Finally the impact of industrial structure upgrading on the carbon emission efficiency are analyzed. Results - It is found that the Moore index and the carbon emission efficiency in the eastern region is the highest in the three regions. Conclusions - The influence of various influencing factors on carbon emission efficiency is different between regions. The Moore index has a positive effect on the carbon emission efficiency in the eastern region, and has a negative influence coefficient on the central region. The effect on the western region is not obvious.

An Indexing Model for Efficient Structure Retrieval of XML Documents (XML 문서의 효율적인 구조 검색을 위한 색인 모델)

  • Park, Jong-Gwan;Son, Chung-Beom;Gang, Hyeong-Il;Yu, Jae-Su;Lee, Byeong-Yeop
    • The KIPS Transactions:PartD
    • /
    • v.8D no.5
    • /
    • pp.451-460
    • /
    • 2001
  • In this paper, we propose an indexing model for efficient structure retrieval of XML documents. The proposed indexing model consists of structured information that supports a wide range of queries such as content-based queries and structure-attribute queries at all levels of the document hierarchy and index organizations that are constructed based on the information. To support structured retrieval, a new representation method for structured information is presented. Using this structured information, we design content index, structure index, and attribute index for efficient retrieval. also, we explain processing procedures for mixed queries and evaluate the performance of proposed indexing model. It is shown that the proposed indexing model achieves better retrieval performance than the existing method.

  • PDF

A Space-Efficient Inverted Index Technique using Data Rearrangement for String Similarity Searches (유사도 검색을 위한 데이터 재배열을 이용한 공간 효율적인 역 색인 기법)

  • Im, Manu;Kim, Jongik
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1247-1253
    • /
    • 2015
  • An inverted index structure is widely used for efficient string similarity search. One of the main requirements of similarity search is a fast response time; to this end, most techniques use an in-memory index structure. Since the size of an inverted index structure usually very large, however, it is not practical to assume that an index structure will fit into the main memory. To alleviate this problem, we propose a novel technique that reduces the size of an inverted index. In order to reduce the size of an index, the proposed technique rearranges data strings so that the data strings containing the same q-grams can be placed close to one other. Then, the technique encodes those multiple strings into a range. Through an experimental study using real data sets, we show that our technique significantly reduces the size of an inverted index without sacrificing query processing time.

Spatio-Temporal Index Structure based on KDB-Tree for Tracking Positions of Moving Objects (이동 객체의 위치 추적을 위한 KDB-트리 기반의 시공간 색인구조)

  • Seo Dong-Min;Bok Kyoung-Soo;Yoo Jae Soo;Lee Byoung-Yup
    • Journal of Internet Computing and Services
    • /
    • v.5 no.4
    • /
    • pp.77-94
    • /
    • 2004
  • Recently, the needs of index structure which manages moving objects efficiently have been increased because of the rapid development of location-based techniques. Existing index structures frequently need updates because moving objects change continuatively their positions. That caused entire performance loss of the index structures. In this paper, we propose a new index structure called the TPKDB-tree that is a spatio-temporal index structure based on KDB-tree. Our technique optimizes update costs and reduces a search time for moving objects and reduces unnecessary updates by expressing moving objects as linear functions. Thus, the TPKDB-tree efficiently supports the searches of future positions of moving objects by considering the changes of moving objects included in the node as time-parameter. To maximize space utilization, we propose the new update and split methods. Finally, we perform various experiments to show that our approach outperforms others.

  • PDF

Design and Implementation of a Trajectory-based Index Structure for Moving Objects on a Spatial Network (공간 네트워크상의 이동객체를 위한 궤적기반 색인구조의 설계 및 구현)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.

An Update-Efficient, Disk-Based Inverted Index Structure for Keyword Search on Data Streams (데이터 스트림에 대한 키워드 검색을 위한, 효율적인 갱신이 가능한 디스크 기반 역색인 구조)

  • Park, Eun Ju;Lee, Ki Yong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.4
    • /
    • pp.171-180
    • /
    • 2016
  • As social networking services such as twitter become increasingly popular, data streams are widely prevalent these days. In order to search data accumulated from data streams efficiently, the use of an index structure is essential. In this paper, we propose an update-efficient, disk-based inverted index structure for efficient keyword search on data streams. When new data arrive at the data stream, the index needs to be updated to incorporate the new data. The traditional inverted index is very inefficient to update in terms of disk I/O, because all index data stored in the disk need to be read and written to the disk each time the index is updated. To solve this problem, we divide the whole inverted index into a sequence of inverted indices with exponentially increasing size. When new data arrives, it is first inserted into the smallest index and, later, the small indices are merged with the larger indices, which leads to a small amortize update cost for each new data. Furthermore, when indices stored in the disk are merged with each other, we minimize the disk I/O cost incurred for the merge operation, resulting in an even smaller update cost. Through various experiments, we compare the update efficiency of the proposed index structure with the previous one, and show the performance advantage of the proposed structure in terms of the update cost.