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Abstract

Purpose - The industrial structure upgrading can play an important role in promoting the carbon emission efficiency. Thus, 

this paper attempts to study the impact of industrial structure upgrading on carbon emission efficiency in order to reduce 

carbon emissions.

Research design, data, and methodology - This paper selects panel data of 30 provinces and municipalities (autonomous 

regions) in China from 2001 to 2016, and divides them into three regions. The Moore index is used to measure the 

industrial structure upgrading, the non-radial SBM model based on undesired output is used to measure the slack variable 

to calculate the total factor carbon emission efficiency. Finally the impact of industrial structure upgrading on the carbon 

emission efficiency are analyzed. 

Results - It is found that the Moore index and the carbon emission efficiency in the eastern region is the highest in the 

three regions. 

Conclusions - The influence of various influencing factors on carbon emission efficiency is different between regions. The 

Moore index has a positive effect on the carbon emission efficiency in the eastern region, and has a negative influence 

coefficient on the central region. The effect on the western region is not obvious.
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1. Introduction

China's economy has developed rapidly since the 21st 

century. At the beginning of the century, China has held its 

own place in the world economy by virtue of its 

resource-intensive and labor-intensive industries. However, it 

is the huge energy consumption and pollutant emissions 

behind the fast-growing economy. Since 2006, China has 

become the world's largest carbon emitter and has been the 

world's largest energy consumer since 2009. Although 

China's carbon dioxide emissions have declined after a 

series of efforts, China's emissions reduction pressure is still 

very large. Reducing the carbon dioxide emissions by 

comprehensively improving the total factor carbon dioxide 

emission efficiency has a major impact on the quality of 
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China's economic growth and the external environment. 

Industrial restructure upgrading has become a core tool for 

coordinating the economy and the environment. Therefore, 

under the existing technology level, how to adjust the 

industrial structure to control China's energy intensity and 

carbon intensity has been widely concerned by government 

departments and researchers. The industrial restructure 

upgrading based on energy conservation and emissions 

reduction is also consistent with the economic with 

low-carbon development behavior advocated by the Chinese 

government in the 13th Five-Year Plan.

Through the analysis of relevant literature, the previous 

literature about the industrial structure has been more 

mature. Therefore, it can be seen from the previous 

research literature that the study of industrial structure 

upgrading and its impact on carbon emission efficiency is 

very reasonable, it is significant for the realization of China's 

energy saving goal. However, the indicators used in the past 

literature to measure the upgrading of industrial structure 
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have certain limitations, which can only reflect whether the 

industrial structure upgraded or not, and cannot reflect the 

direction of industrial structure upgrading. This paper uses 

the Moore index to overcome this shortcoming and the 

non-radial SBM model based on undesired output is used to 

calculate the slack variable and GML index, then the total 

factor carbon emission efficiency under multi-input and 

multi-output is calculated according to the slack variable, and 

finally the impact of industrial structure upgrading on carbon 

emission efficiency is analyzed.

The remainder of this paper is organized as follows. 

Section 2 reviews the related literature. Section 3 introduces 

the methodology. Section 4 analyzes the empirical results 

and discussion in China and in the three major economic 

regions of China. Section 5 consists of conclusions and 

recommendations.

2. Literature Review

First, some researchers studied the impact of industrial 

structure on carbon emission. Kaya and Yokobori (1993) first 

proposed the concept of carbon productivity and defined 

carbon productivity as the ratio of carbon dioxide emissions 

to nominal GDP. According to optimistic estimates by 

scholars, industrial restructure change has contributed more 

than 70% to achieving carbon intensity target (Wang, 2014). 

Zhang (2014) measured the optimal industrial adjustment 

path for China to achieve the minimum fluctuation of the 

national economy, and revealed the key industries that 

should encourage and control development under the 

low-carbon economy and sustainable development, and 

believed that with the tightening of carbon emission 

reduction constraints and the improvement of economic 

growth targets, the required industrial structure adjustment 

will gradually increase, and the structural changes required 

for strengthening emission reductions will be greater than 

the changes required for higher economic growth rates. Wu, 

Huang, and Chuai (2015) used the EIO-LCA method to 

analyze the hidden carbon of various industrial sectors in 

Jiangsu Province from production to supply chain to 

consumption, and on this basis, explored the carbon 

emission reduction potential of industrial restructure 

adjustment and provided a theoretical reference for the 

scientific formulation of emission reduction policies in Jiangsu 

Province. Zhang, Liao, and Yang (2017) constructed the 

industry's energy structure consumption matrix and carbon 

row structure matrix through the industry's production 

structure matrix, aiming to get the optimal industrial structure 

adjustment plan of China in 2020 under the dual constraints 

of energy consumption and carbon dioxide emissions, and 

calculated the potential of China's largest carbon emissions 

based on the existing technology level. Diana (2018) 

introduces the Markov conversion mechanism into the 

productivity framework to measure how sustainable 

development and corporate restructuring occur in the face of 

industrial transformation and structural change, and analyzed 

the impact of dynamics and structural changes of industrial 

development on sustainable development, and believed that 

the industry should adopt sustainable economic policies 

based on environmental impacts. Zhang, Jiang, and Liu 

(2018) used a dynamic factor model to decompose and 

compare the impact of industrial structure on carbon 

emission reduction, studied the industrial structure in China 

during the five-year plan period from 2006 to 2030 from the 

perspective of industry and sector and the result showed 

that China's industrial structure had a positive impact on 

carbon emission reduction potential and this effect varied 

with the proportion of sectors in the economic structure.

Second, some literature studied the related problems 

about carbon emission efficiency. Chang, Zhang, and Chang 

(2016) verified that the allocation standard based on Shapley 

value is an equal and effective allocation of emission 

reduction targets. Zhang (2017) uses the systematic general 

method of moments to estimate the impact of environmental 

innovation on carbon emissions. Labor mobility between the 

first, second and tertiary industries helps to increase TFCE 

(TFP adjusted by energy consumption and carbon dioxide 

emissions), carbon efficiency and energy consumption 

efficiency, but capital transfer does not produce the same 

effect (Li & Lin, 2017). Zhang et al. (2018) used DEA-based 

Meta-frontier non-radial DDF to measure carbon emissions 

performance and found that the CDM project does not 

necessarily contribute to improving carbon emissions 

performance in most countries. Román and Morales (2018) 

found that the main drivers of increased carbon dioxide 

emissions include population intensity, human activities, 

carbonization processes and fossil fuel combustion. Iftikhar, 

Wang, and Zhang (2018) found that economic and 

distribution inefficiencies affect CO2 emissions efficiency. Bye, 

Fæhn, and Rosnes (2018) focused on Norway's 2030 

residential energy efficiency policy objectives and explored 

their interactions with carbon dioxide emission targets.

3. Methodology

3.1. Measurement Method of Industrial Structure 

Upgrading

Although the previous research on industrial structure 

adjustment can reflect the law of industrial structure change 

in general, it only focuses on the static description of 

industrial structure in the current period, which does not 

reflect the degree of inter-temporal change of industrial 

structure. As pointed out by Zhang and Pu (2015), the 

traditional service index ignores the evolutionary 

characteristics of the primary industry. Therefore, it is 
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necessary to make a more detailed division of the industrial 

structure, and pay attention to dynamic changes in the index 

construction that represents the adjustment of industrial 

structure in order to reflect the extent and direction of the 

industrial structure's inter-temporal changes. According to 

Zhou and Ren (2011), this paper divides the macroeconomic 

industrial structure into seven major industries. The order of 

the industrial grades from low to high is: agriculture, 

industry, construction, real estate, wholesale and retail 

accommodation and catering, Transportation Warehousing 

postal industry and the financial industry to form regional 

industrial structure vectors, and then calculate the degree of 

change in each industry separately. When calculating the 

Moore value of the j industry in i region, it is assumed that 

the proportion of other industries in the t+1 period is the 

same as that in the t-th period, and the Moore value of the 

j industry from the t-th period to the t+1-th period is 

calculated. It is assumed that the proportion of other 

industries other than the j industry in the t-th region of the i 

region is the same as that in the t+1 period, and the Moore 

value of the j industry from the t-th phase to the t+1-th 

period is calculated. Then, the geometric mean of the Moore 

value is taken twice as the transition degree of the j 

industry in the i region from the t-th to the t+1-th. Finally, 

the Moore values of all industries are aggregated, and the j 

industry arranged in the j position is repeatedly 

superimposed j times to indicate the direction of industrial 

structure change. However, this practice still ignores the 

importance of the j industry in the economic development of 

the region. Therefore, this paper follows the calculation 

method of Zhang and Pu (2015), and adds the proportion of 

the output value of the j industry when calculating the 

Moore value of the i region.

First, calculate the 
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Then, the degree of industrial structure upgrading between 

the t-th and t+1th periods in the i region is as follows:
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3.2. Analysis of the Calculation Results of Industrial 

Structure Upgrading

In order to analyze regional differences, according to 

Zheng and Yang (2017), 30 provinces (autonomous regions) 

are divided into three main economic regions: the eastern 

region, the central region, and the western region. The 

eastern region includes 11 provinces: Beijing, Tianjin, Hebei, 

Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, 

Guangdong and Hainan. The central region includes includes 

8 provinces: Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, 

Henan, Hubei and Hunan. The western region includes 11 

provinces: Chongqing, Sichuan and Guizhou. Yunnan, 

Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi and 

Inner Mongolia. The specific division is shown in Table 1.

Table 1: Three economic regions

Regions Provinces

East
Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, 

Zhejiang, Fujian, Shandong, Guangdong, Hainan

Central
Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, 

Hubei, Hunan

West

Chongqing, Sichuan , Guizhou, Yunnan, Shaanxi, 

Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner 

Mongolia

  

Note: Due to the lack of data, Tibet, Hong Kong, Macao, Taiwan 

are not included in this paper.

According to equation (1) and equation (2), this paper 

measures the Moore values of the three regions from 2001 

to 2016. Table 2 shows the industrial structure change 

values of the three regions. It can be seen that the 

inter-temporal changes of industrial structure have regional 

differences. From the average of Moore value, the speed of 

industrial structure upgrading in the eastern region is the 

fastest. The average speed of industrial structure changes in 

the 11 provinces and autonomous regions in the western 

region is second, and the average speed in the 8 provinces 

in the central region is the slowest. This is mainly because 

the role of further changes in the industrial structure 

reflected in each region is different. In recent years, the 

implementation of national policies has also had a significant 

impact on the three major regions. The open economy in 

the eastern region has developed rapidly under the 

promotion of policies, the technical level has been 

significantly improved, and industrial structure has been 

promoted. The implementation of the western development 

policy, especially the implementation of the new "Silk Road", 

the western region has been influenced by the international 

and domestic markets, which has greatly boosted the 

western region development. Due to its inland location, the 

central region is subject to certain restrictions, the industrial 

structure changes and upgrades are the slowest.
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Table 2: Moore value in three regions

East Central West Average

2001 2.592 3 2.419 0 2.404 2 2.477 1

2002 2.571 6 2.449 2 2.406 3 2.478 3

2003 2.541 4 2.433 6 2.410 1 2.464 5

2004 2.518 1 2.412 7 2.389 8 2.442 9

2005 2.364 6 2.290 4 2.244 6 2.300 8

2006 2.478 2 2.292 7 2.342 3 2.378 9

2007 2.498 7 2.314 2 2.352 2 2.395 8

2008 2.528 5 2.318 2 2.341 7 2.403 9

2009 2.524 9 2.308 2 2.330 0 2.395 7

2010 2.632 5 2.355 4 2.428 2 2.483 7

2011 2.657 5 2.358 7 2.430 4 2.494 6

2012 2.654 9 2.337 9 2.434 5 2.489 5

2013 2.671 1 2.365 5 2.467 4 2.514 9

2014 2.683 5 2.415 8 2.492 0 2.541 9

2015 2.693 0 2.559 4 2.559 5 2.555 6

2016 2.679 7 2.523 0 2.490 6 2.474 6

Mean 2.580 7 2.365 1 2.396 9 2.455 8

Figure 1 shows the time trends of industrial structure 

upgrading in the three regions. It can be seen that: (1) from 

the comparison of the degree of industrial structure 

upgrading, compared with other regions and the national 

average, the Moore value in the eastern region is the 

highest, higher than the national average and the central 

region and the western region. The level of structural 

change upgrading is higher in the western region than that 

in the central region and below the national average. This 

result is consistent with the economic development level and 

policy implementation of the three regions. (2) From the 

perspective of the time trends of the industrial structure 

upgrading, the degree of industrial structure change in the 

three major regions has stage volatility with time. This result 

is the same as the national analysis results. The fluctuations 

are divided into three stages: the first stage is 2001-2005, 

the industrial structure upgrading in the eastern, central and 

western regions are slow. The trend is because this stage 

has just entered the 21st century, and the level of economic 

development is relatively backward. The industrial structure 

in regions mainly include resource-intensive and 

labor-intensive industries, and the industrial structure 

upgrading rate is slow or even declining; the second stage 

is 2006-2010, the rate of industrial structure upgrading at 

this stage has increased compared with the previous stage. 

The proportion of low-end industries has been decreasing, 

high-end industries have been developed, and industrial 

structure has been upgraded; the third stage is 2011-2016, 

in the early stage, the industrial structure upgrading rate is 

fast. This is because the rapid development of new 

technology in recent years has greatly improved the 

technical level. Later in this stage, as the industrial structure 

upgraded to a certain extent, the resistance became larger 

and the upgrading speed slowed down.

3.3. Measurement of Carbon Emission Efficiency

In this paper, the non-radial non-angled SBM model 

based on slack variables proposed by Tone (2001) is used 

to introduce carbon dioxide emissions as undesired outputs 

into the SBM model to measure the total factor carbon 

emission efficiency in order to avoid radial and angular the 

interference caused by the measurement results. The 

specific method is as follows: this paper supposes that K 

represents the number of DMUs (k=1, 2...K), that T 

represents the production time (t=1, 2...T), and that any DMU 

can use N kinds of input to gain M kinds of desired output 

and B kinds of undesired output. And the production 

possibilities set can be defined as 

( ) ( ){ ( )}, produce ,P x y b x can y b= . Generally, input factors and 

desired outputs satisfy strong disposition, and undesired 

outputs satisfy weak disposition. 
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Figure 1: Time trends of industrial structure upgrading in the three regions
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Based on the above basic assumptions, this paper sets 

the non-radial SBM model considering the undesired output 

as follows:

   

1

1 1

1
1

min
1

1 ( )

θ

=

= =

−

=

+ +

+

∑

∑ ∑

x
N

kn

n
kn

y b
M L

km kl

m l
km kl

s

N x

s s

M L y b (3)

s.t. 1
,λ

=

+ = ∀∑
K x

kn kn knk
x s x n (4)

   1
,λ

=

− = ∀∑
K y

k km km kmk
y s y m            (5)

   1
,λ

=

+ = ∀∑
K b

k kl kl klk
b s b l               (6)

   0,λ ≥ ∀
k

k                         (7)

   0, 0, 0≥ ≥ ≥
x y b

kn km kls s s                (8)

   1
1λ

=

=∑
K

kk                   (9)

Where kn
x , km

y  and kl
b  represent the nth input, the mth 

expected output, and the lth undesired output of the kth 

decision unit, respectively, and 
x

kn
s , 

y

kms  and 
b

kl
s  represent 

inputs, undesired outputs and the slack variable, 

respectively.

The slack variable in equation (3) is a direct quantification 

of inefficiency, that is the difference between the 

corresponding actual input and output and the corresponding 

input and output under full efficiency. Based on the above 

ideas, this paper defines the total factor carbon emission 

efficiency (TFCE) as the carbon dioxide emission efficiency 

under multiple inputs and multiple outputs as the total factor 

carbon emission efficiency, which specifically refers to the 

ratio of the target carbon dioxide emissions to the actual 

carbon dioxide emissions under the full efficiency. It can be 

specifically defined as follows:

( ) ( )

( )

( )

( )
2 2 2

2 2

−

= =

actual output CO slack CO target output CO
TFCE

actual output CO actual output CO (10)

The TFCE in equation (10) considers the total factor 

efficiency under the combined action of capital (K), labor (L) 

and energy (E). It mainly reflects two meaning: first, it 

explains the impact extent of factor endowment to carbon 

dioxide emissions; second, it portrays the environmental 

costs of economic growth.

3.4. The Calculation Results of Carbon Emission 

Efficiency

This paper takes labor, capital, energy consumption as 

input, GDP as desired output, carbon dioxide emissions as 

undesired output, and adopts non-radial SBM model based 

on undesired output. The slack variable is measured by 

MaxDEA software and the total factor carbon emissions 

efficiency is calculated by equation (10). Figure 2 shows the 

time trends of carbon emission efficiency in the three 

regions. From the regional perspective, the carbon emission 

efficiency in the eastern region has been at a high level 

and is the highest in the three regions. The carbon emission 

efficiency level in the western region is the lowest and the 

overall efficiency level is relatively stable. The carbon 

emission efficiency level in the central region is between the 

eastern and western regions, and shows an upward trend. 

This is because the provinces in eastern region are mostly 

coastal developed areas with the most convenient 

transportation conditions and the earliest implementation of 

reform and opening up. The central and western regions are 

in China's inland areas. The traffic conditions and historical 

factors have led to an underdeveloped economic level and 

the technical level.
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Figure 2: Time scatter plot of carbon emission efficiency 

in the three regions.

4. Empirical Analysis

4.1. Model Establishment and Tests

The purpose of this paper is to study the impact of 

industrial structure upgrading and technological progress on 

carbon emission reduction potential. Moore index is as a 

core explanatory variable, energy consumption structure 

(ES), environmental regulation (ER), foreign direct investment 

(FDI) and R&D investment (RD) are added as control 

variables to construct the measurement model of the factors 

that influence the total factor carbon emission efficiency as 

shown in equation (11) .

μββββββ ++++++= RDFDIERESMooreTFCE
543210    (11)
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4.1.1. Multi-collinearity Test

In the existing literature, the correlation coefficient matrix 

between variables is used as as evaluation criterion to test 

the multi-collinearity. One drawback of the above approach 

is that even if the correlation coefficient between variables is 

small, the model may still have the possibility of 

multicollinearity due to the interaction between variables. In 

order to overcome this limitation, the variance inflation factor 

is used to test whether there is a multi-collinearity between 

variables or not. The calculation results of the variance 

inflation factor are shown in Table 3. According to the 

judgment experience, the criterion for judging the 

multi-collinearity must be satisfied at the same time: (1) the 

maximum VIF is greater than 10; (2) the average VIF is 

greater than 1. It can be seen from the results in Table 3 

that the maximum value of VIF is only 1.36, which is much 

less than 10, which does not meet the first criterion of the 

criterion for variance expansion factor. The multi-collinearity 

problem of the model does not cause a large bias to the 

estimation results, and can be ignored (Yao, Yang, & Gao, 

2016).

Table 3: Calculation results of variance inflation factor

Variable VIF 1/VIF

Moore 1.33 0.753 829

GPC 1.03 0.968 033

GDP 1.14 0.875 183

ES 1.34 0.747 889

ER 1.26 0.796 199

FDI 1.36 0.733 639

Mean VIF 1.24

4.1.2. Heteroscedasticity and Autocorrelation Tests

If the model has heteroscedasticity, then if the ordinary 

least squares estimation is used, although the parameter 

estimator still satisfies linearity and unbiased conditions but it 

will make the parameter estimator lose its validity, the 

significance test of the variables loses its meaning, and the 

model is used for prediction is invalid. The existence of 

autocorrelation will also make the estimation result 

ineffective. Considering these problems, this paper uses the 

modified Wald test, the Woodridge test and the Friedman 

test to test the heteroscedasticity, first-order autocorrelation 

and contemporaneous correlation between the groups. The 

results of heteroscedasticity and autocorrelation tests are 

shown in Table 4. It can be seen from the results in Table 

4 that there is no heteroscedasticity in the model, but there 

is a first-order autocorrelation and a contemporaneous 

correlation between the groups. Therefore, considering these 

problems, this paper uses the comprehensive feasible 

generalized least squares (FGLS) to solve this problem 

(Chen, 2014).

Table 4: Heteroscedasticity and autocorrelation tests

Tests Null hypothesis Statistics P-value

Modified Wald test Same variance 5.24 0.994 4

Woodridge test
No first-order 
autocorrelation

181.833 0.000 0

Friedman test
No contemporaneous 

correlation between groups
2231.630 0.000 0

4.2. Data Sources and Indicators

This paper selects the panel data of 30 provinces 

(autonomous regions) in China from 2001 to 2016. This 

paper studies the total factor carbon emission efficiency, 

thus input factors include labor, capital and energy 

consumption, desired output factors is GDP and undesired 

output is carbon dioxide emissions. In particular, the 

calculation of capital stock draws on the method of Shan 

(2008), and the calculation of carbon dioxide emissions 

refers to the calculation methods of carbon dioxide 

emissions of standard coal by Tu and Liu (2014). The 

calculation of industrial structure upgrading refers to the 

practice of Wu, Wang, and He (2018) and uses the Moore 

index. The level of economic development is expressed by 

GDP. The energy consumption structure is expressed by the 

proportion of coal consumption in total energy consumption. 

The environmental regulation uses the proportion of the 

environmental pollution control investment in GDP. Foreign 

direct investment uses the actual use of foreign direct 

investment in GDP. The original data come from the 

2002-2017 China Statistical Yearbook, China Energy 

Statistical Yearbook and the Provincial Statistical Yearbooks.

4.3. Discussions about Empirical Results

4.3.1. National Empirical Results

This paper analyzes the factors affecting the carbon 

emission efficiency of 30 provinces and municipalities 

(autonomous regions) in China. The empirical results are 

shown in Table 5. This paper uses the method of gradually 

adding control variables. The results show that the Moore 

value has a significant positive impact on carbon emission 

efficiency, which indicates that the industrial structure 

upgrading will significantly improve the total factor carbon 

emission efficiency. Among the control variables, the impact 

of GDP on carbon emission efficiency is positive. As the 

level of economic development increases, technology level 

will improve, which will help improve carbon emission 

efficiency. There is a significant negative correlation between 

energy consumption structure and carbon emission efficiency 

which indicates that reducing coal consumption will help 

improve carbon emission efficiency. The impact of 

environmental regulation on carbon emission efficiency is 

significantly negative. One possible explanation is that this 

paper uses the proportion of environmental pollution control 

investment in GDP to represent environmental regulation. In 
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fact, the total investment in environmental pollution control is 

increasing year by year. However, the growth of GDP 

exceeds the growth of investment, which leads to a 

decrease in the proportion of each year. Therefore, the 

coefficient of environmental regulation is negative. The 

impact coefficient of FDI on carbon emission efficiency is 

significantly positive, indicating that foreign direct investment 

has a technology spillover effect, which will help improve 

carbon emission efficiency.

4.3.2. Empirical Results in the Three Regions

Table 6 shows the empirical results of the factors 

affecting carbon emission efficiency in the three regions. In 

the eastern region, the results show that the impact 

coefficient of Moore index on carbon emission efficiency is 

significantly positive, indicating that the industrial structure 

upgrading will promote the improvement of carbon emission 

efficiency. There is a negative correlation between energy 

consumption structure and carbon emission efficiency. 

Reducing the proportion of coal consumption in total energy 

consumption will promote the carbon emission efficiency. FDI 

has a significant positive impact on carbon emission 

efficiency, which is consistent with the country. In the central 

region, the impact coefficient of the Moore index on carbon 

emission efficiency is significantly negative, and the impact 

of foreign direct investment on carbon emission efficiency is 

significantly positive. In the western region, the industrial 

structure upgrading has a significant positive impact on 

carbon emission efficiency, and the coefficient of GDP is 

significantly positive, which is similar to the national results. 

The impact coefficient of the energy consumption structure is 

significantly negative, and the reduction in the proportion of 

coal consumption will also help improve the carbon emission 

efficiency. The impact of environmental regulation on carbon 

emission efficiency is negative.

Table 5: Empirical results of factors affecting carbon emission efficiency in China

(1) (2) (3) (4) (5)

Variables TFCE TFCE TFCE TFCE TFCE

Moore 0.157 0*** 0.127 0*** 0.095 2*** 0.107 0*** 0.031 3***

(0.000) (0.000) (0.000) (0.000) (0.000)

GDP 0.011 4 0.011 5 0.007 6 0.014 8*

(0.054) (0.080) (0.320) (0.013)

ES -0.209 0*** -0.175 0*** -0.104 0***

(0.000) (0.000) (0.000)

ER -0.021 9*** -0.023 8***

(0.000) (0.000)

FDI 0.023 6***

(0.000)

_cons 0.418 0*** 0.415 0*** 0.557 0*** 0.489 0*** 0.466 0***

(0.000) (0.000) (0.000) (0.000) (0.000)

N 480 480 480 480 480

Note: ***, **, * indicate that the coefficients are significant at the statistical levels of 1%, 5% and 10%, and the value p statistics is in 

parentheses. 

Table 6: Empirical results of factors affecting carbon emission efficiency in three regions

Regions East Central West

Variables TFCE TFCE TFCE TFCE TFCE TFCE

Moore 0.124 0*** 0.018 2*** -0.481 0*** -0.476 0*** 0.301 0*** 0.017 5***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

GDP -0.002 9 -0.014 0 0.102 0***

(0.592) (0.426) (0.000)

ES -0.288 0*** -0.076 0 -0.032 8*

(0.000) (0.113) (0.044)

ER -0.003 5 0.010 0 -0.093 4***

(0.421) (0.581) (0.000)

FDI 0.026 3*** 0.059 7*** 0.004 3

(0.000) (0.000) (0.353)

_cons -0.144 0*** 0.379 0*** 1.364 0*** 1.284 0*** 1.083 0*** 0.821 0***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

N 176 176 128 128 176 176

Note: ***, **, * indicate that the coefficients are significant at the statistical levels of 1%, 5% and 10%, and the value p statistics is in 

parentheses. 
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5. Conclusions and Recommendations

This paper selects the panel data of 30 provinces 

(autonomous regions) in China from 2001 to 2016, and 

divides them into three regions to study the impact of 

industrial structure upgrading on carbon emission efficiency. 

The results show that the degree of industrial structure 

upgrading over time is different between provinces and 

regions, with the features of overall stability, stage volatility 

and regional differences. The Moore value in the eastern 

region is the highest, higher than the national average and 

the central and western regions. The Moore index has a 

positive effect on carbon emission efficiency in the eastern 

and western regions, and has a negative impact coefficient 

on the central region. The improvement of the level of 

economic development has a positive effect on the carbon 

emission efficiency in the western region. The energy 

consumption structure has a negative impact on carbon 

emission efficiency in the eastern and western regions, 

meaning that reducing the share of coal consumption in 

energy consumption can help improve carbon efficiency. 

Foreign direct investment has a positive effect on the 

eastern and central regions, which can effectively promote 

the carbon emission efficiency. Based on the empirical 

results, this paper proposes the following policy 

recommendations.

(1) Improve the carbon emission reduction effect of the 

industrial structure. The government should encourage 

resource-intensive industries to transform into 

capital-intensive and technology-intensive industries, 

accelerate the transformation and upgrading of traditional 

resource-based industries, and promote the rapid 

development of emerging industries. The government should 

formulate relevant policies to promote industrial upgrading, 

focus on controlling and rectifying traditional industries with 

excessive carbon emissions, and promote the transformation 

and upgrading of resource-oriented industries to 

high-efficiency and low-carbon industries.

(2) Pay attention to the effect of other influencing factors 

on carbon emission efficiency. All regions should reduce the 

proportion of coal consumption in energy consumption and 

improve the development level of clean energy and continue 

to increase investment in environmental pollution control, set 

the threshold for foreign direct investment, and attract 

high-quality investment.

(3) Encourage inter-regional collaboration to improve 

carbon emission efficiency. Strengthen cooperation 

exchanges between regions, and the government can 

establish a joint governance system with neighboring regions 

to reduce the impact of external carbon emissions on the 

region through collaboration between the region and 

neighboring regions. Each region can exchange and learn 

advanced emission reduction technologies to improve their 

carbon emission reduction capacity so as to achieve carbon 

emission reduction targets at an early date.
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