• Title/Summary/Keyword: Independent Frequency Shift

Search Result 34, Processing Time 0.029 seconds

The Relationship Between Frequency of Injuries and Workplace Environment in Korea: Focus on Shift Work and Workplace Environmental Factors

  • Kim, Jongwoo
    • Safety and Health at Work
    • /
    • v.9 no.4
    • /
    • pp.421-426
    • /
    • 2018
  • Background: The purpose of this study was to investigate the effect of shift work on occupational safety in various industrial sectors. The study analyzes the effects of shift work on the health of workers by considering factors such as the workplace environment and welfare. Methods: Focusing on the $4^{th}$ Korean Working Conditions Survey, this study used an ordinary least-square multiple regression analysis. The dependent variable was the annual frequency of injuries reported by workers. Independent variables were categorized as demographic, shift work, workplace environment, and welfare variables. The analysis was conducted on two levels: 1) Shift work and nonshift work groups were compared, and 2) Shift work was compared with fixed and rotating shifts. Results: For the entire group, age, a low level of education, work hours, and daily and dispatch work negatively impacted the frequency of injuries. Shift work was negatively affected by workplace environment and welfare factors. In the shift group, the frequency of injuries was lower than that of regular workers, and the higher the autonomy in the choice of work hours, the lower the frequency of injuries. Furthermore, shift workers in Korea have more extended work hours (49.25 h/week) than other workers (46.34 h/week). Conclusion: Overall, welfare factors such as workplace satisfaction and worke-life balance reduced the frequency of injuries. The effect of shift work was limited, but it was confirmed that shift worker autonomy could reduce the frequency of injuries.

Surface elasticity-based modeling and simulation for dynamic and sensing performances of nanomechanical resonators

  • Kilho Eom
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.285-294
    • /
    • 2023
  • The dynamic and sensing performances of nanomechanical resonators with their different boundary conditions are studied based on surface elasticity-based modeling and simulation. Specifically, the effect of surface stress is included in Euler-Bernoulli beam model for different boundary conditions. It is shown that the surface effect on the intrinsic elastic property of nanowire is independent of boundary conditions, while these boundary conditions affect the frequency behavior of nanowire resonator. The detection sensitivity of nanowire resonator is remarkably found to depend on the boundary conditions such that double-clamping boundary condition results in the higher mass sensitivity of the resonator in comparison with simple-support or cantilever boundary condition. Furthermore, we show that the frequency shift of nanowire resonator due to mass adsorption is determined by its length, whereas the frequency shift is almost independent of its thickness. This study enables a design principle providing an insight into how the dynamic and sensing performances of nanomechanical resonator is determined and tuned.

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

Design of Dual Half Wavelength Loaded Line Antenna for Multiband Mobile Handsets (다중 대역 이동 통신 단말기용 이중 반파장 로디드 라인 안테나 설계)

  • Park, Jin-Woo;Kim, Duk-Gu;Jung, Byung-Woon;Park, Myun-Joo;Cheong, Young-Seek;Lee, Byung-Je
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.265-272
    • /
    • 2007
  • In this paper, a frequency changeable antenna using dual half wavelength loaded line structure is proposed for multiband mobile handset applications. The proposed antenna has a capability of independent frequency shift by controlling two added inductance values in two different bands. Experimental results indicate that the proposed antenna provides enough effective bandwidth to cover $CELLULAR(824\sim894\;MHz)$, $EGSM(880\sim960\;MHz)$, $DCS1800(1,710\sim1,880\;MHz)$, $PCS1900(1,850\sim1,990\;MHz)$ and $WCDMA(1,920\sim2,170\;MHz)$ bands and peak gain variation is only 0.54 dB.

Block Error Performance of Transmission in Slow Nakagami Fading Channels with Diversity

  • Kim, Young-Nam;Kang, Heau-Jo;Chung, Myung-Rae
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.119-122
    • /
    • 2003
  • In this paper presents equations which describe an average weighted spectrum of errors and average block error probabilities for noncoherent frequency shift keying (NCFSK) used in D-branch maximal ratio combining (MRC) diversity in independent very slow nonselective Nakagami fading channels. The average is formed over the instantaneous receiver signal to noise ratio (SNR) after combining. the analysis is limited to additive Gaussian noise.

Robust Channel Equalization for OFDM Receiver (OFDM 수신기용 강인한 채널 등화 알고리즘)

  • Song, Jin-Ho;Hwang, Hu-Mor
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2606-2609
    • /
    • 2001
  • We propose a robust channel equalization algorithm. which is called a 1-tap additional coefficient decision feedback equalizer(ACDFE), to improve the Doppler shift performance for the OFDM receiver. The algorithm is based on the frequency domain DFE with additional coefficients which are independent of the OFDM subcarriers. Test results on OFDM-16QAM signals confirm that the proposed ACDFE is robust against fading channel due to Doppler shifts and outperforms the conventional DFE in terms of SER, MSE, and convergence speed.

  • PDF

Multiple-Load Induction Cooking Application with Three-Leg Inverter Configuration

  • Sharath Kumar, P.;Vishwanathan, N.;Murthy, Bhagwan K.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1392-1401
    • /
    • 2015
  • Inverter configurations for multiple-load induction cooking applications need development. Inverter configurations for induction cooking applications are used in home appliances based on single coil inverters. For multiple-load configurations, multiple coils are used. They require proper inverters, which provide independent control for each load and have fewer components. This paper presents a three-leg inverter configuration for three load induction cooking applications. Each induction coil powers one induction cooking load. This configuration operates with constant switching frequency and powers individual loads. The output power of the required load is controlled with a phase-shift control technique. This configuration is simulated and experimentally tested with three induction loads. The simulation and experimental results are in good agreement. This configuration can be extended to more loads.

Design of PLL Frequency Synthesizer for a 915MHz ISM Band wireless transponder using CPFSK communication (CPFSK communication 사용한 915MHz ISM Band 위한 PLL Frequency Synthesizer 설계)

  • Kim, Seung-Hoon;Cho, Sang-Bock
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.286-288
    • /
    • 2007
  • In this paper, the fast locking PLL Frequency Synthesizer with low phase noise in a 0.18um CMOS process is presented. Its main application IS for the 915MHz ISM band wireless transponder upon the CPFSK (Continuous Phase Frequency Shift Keying) modulation scheme. Frequency synthesizer, which in this paper, is designed based on self-biased techniques and is independent with processing technology when damping factor and bandwidth fixed to most important parameters as operating frequency ratio, broad frequency range, and input phase offset cancellation. The proposed frequecy synthesizer, which is fully-integrated and is in 320M $^{\sim}$ 960MHz of the frequency range with 10MHz of frequency resolution. And its is implemented based on integer-N architecture. Its power consumption is 50mW at 1.8V of supply voltage and core area is $540{\mu}m$ ${\times}$ $450{\mu}m$. The measured phase noises are -117.92dBc/Hz at 10MHz offset, with low settling time less than $3.3{\mu}s$.

  • PDF

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

The Effects of Hand-Arm Vibration on Flexor and Extensor Fatigue (전완(前腕)의 국부(局部) 진동(振動)이 작업자의 굴근(屈筋) 및 신근(伸筋) 피로(疲勞)에 미치는 영향)

  • Lee, Dong-Chun;Kim, Gil-Ju
    • Journal of the Ergonomics Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.55-69
    • /
    • 1999
  • It is very common to use the powered hand tools to enhance the productivity in various types of industry. But the use of the powered hand tools could cause health problems such as cumulative trauma disorders and vibration white fingers. In this study. the effects of hand-arm vibration and anatomical hand position on localized muscle fatigue were analyzed. Eight healthy male subjects volunteered for the study. Vibration frequencies of 0, 40, 80, 100, 150, and 200Hz and hand position of flexion and ulnar deviation were selected for the independent variables of the experiment. Median frequency shifting was used as a dependent variable. The results indicated that at the vibration frequency of 40Hz and accelation of 2g, the muscle fatigue was the greatest. For the hand position. there was significant difference between neutral and flexion. and neutral and ulnar deviation, but no difference between flexion and ulnar deviation. These results could be applied in designing powered hand tools to minimize the health problems.

  • PDF