• Title/Summary/Keyword: Indentation Method

Search Result 293, Processing Time 0.023 seconds

The Comparisons of Anthropometric Data According to Measurement Methods (측정방법에 따른 인체측정치의 비교 분석)

  • Yi, Kyong-Hwa;Kim, Ji-Eun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.37 no.1
    • /
    • pp.39-50
    • /
    • 2013
  • This study estimates the measurements required to make garments but omitted from Size Korea 2010. Before the estimation of the measurements, the differences of the measurement methods were reviewed through previous research related to clothing construction and various measurement protocols that include previous Size Korea 2010 projects and ISO. The research target was 308 females aged 20 to 30 who lived in Seoul and the surrounding Gyeonggi province. A total of 43 measurements were obtained by the direct measurement method and analyzed in this study. In addition, 17 measurements which differ from the measurement method were also measured directly. These 17 measurements items were waist height, waist back height, waist height natural indentation, body rise, rise length, waist back length 1 & 2, posterior shoulder length 1 & 2, arm length 1 & 2, upper arm circumference 1 & 2, elbow circumference 1 & 2, and waist circumference 1 & 2. To analyze the differences in measurements, the subjects were divided into 2 age groups (20's and 30's). The results were as follows: First, there were big differences in stature, waist height, shoulder length, total length, and neck shoulder point to breast points by age groups; however, there were no differences in 17 measurement (such as shoulder angles) by age groups. Second, it was determined that 'waist circumference 1 & 2', 'waist back length 1 & 2', 'arm length 1 & 2', 'elbow circumference 1 & 2', 'upper arm circumference 1 & 2' and 'body rise & rise length' had significant differences by measurement methods in the entire group as well as each age group. Third, the values of 8 measurements omitted from Size Korea 2010 were estimated using similar measurements. The results of the correlation analysis were utilized to select reasonable independent measurements. Finally, 10 regression equations were obtained by regression analysis; subsequently, these will be useful for estimation of omitted measurements in Size Korea 2010.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

THE EFFECT OF SURFACE FINISHES ON FLEXURAL STRENGTH, FRACTURE TOUGHNESS OF FELDSPATHIC DENTAL PORCELAIN

  • Chang, Il-Sung;Lee, Sun-Hyung;Yang, Jae-Ho;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.3
    • /
    • pp.293-305
    • /
    • 2005
  • Statement of problems. Conventional feldspathic porcelain is used extensively as a restorative material and it is subjected to grinding and polishing during fabrication and delivery procedures. There is still considerable controversy concerning the best methods to achieve the strongest porcelain restorations after such adjustments. Purpose. The objective of this study was to investigate the effects of (1) overglazing, (2) selfglazing, and (3) fine polishing on the flexural strength and fracture toughness of feldspathic dental porcelain. Material and method. Ninety porcelain disks were prepared for flexural strength test and sixty porcelain disks were fabricated for fracture toughness test. Specimens were divided into three groups for each test as follows: 1) overglazed 2) self-glazed 3) polished. The flexural strength of feldspathic porcelains was determined by ring-on-ring biaxial flexural strength test. The fracture toughness values of three experimental groups were obtained by indentation fracture toughness test. Results. The flexural strength of overglazed group was significantly higher than that of selfglazed and polished group (P<0.05), while the difference between self-glazed and polished group was not significant (P>0.05). The fracture toughness values of overglazed and polished group were significantly higher than that of self-glazed group (P<0.05), while the difference between overglazed and polished group was not significant (P>0.05). Conclusions. This results supported the use of polishing as an alternative to glazing metal ceramic restorations, as it was not detrimental in flexural strength and fracture toughness. But, under the conditions of this study, overglazing was the ideal surface finishing method of feldspathic dental porcelain.

Study on Residual Stress Distribution in Thick Plate Welded Material Using Indentation Equipment (압입시험기를 이용한 후판용접재의 잔류응력 분포에 관한 연구)

  • Huh, Sun-Chul;Kim, Gwi-Nam;Lee, Jong-Seok;Park, Cheol-Hong;Park, Joun-Sung;Park, Won-Jo
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.66-71
    • /
    • 2011
  • Recently, the production of shipbuilding and offshore plant industries, with a trend toward large structures, has led to an increased use of high strength ultra-thick plates. The use of ultra-thick plates increases the welding tasks, and the welding process generates distortion and residual stress in the weldment because of the rapid heating and cooling. Welding distortion and residual stress in the welded structure resulte in many troubles such as deformation and life deterioration. In particular, the welding residual stress has an important effect on welding deformation, fatigue, buckling strength, brittleness, etc. The purpose of this study was to evaluate the residual stress at a multi-pass weldment using an experimental method for EH36 high-tension steel. In this experimental method, AIS3000 was used to measure the residual stress of a welded part, HAZ, and base metal; EPMA and XRD were used to study the material properties.

Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels (피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향)

  • Kim, Yeon-Ku;Kim, Weon-Ju;Yeo, SungHwan;Cho, Moon Sung
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

Effect of Microstructure on the Environmentally Induced Cracking Behavior of Al-Zn-Mg-Cu-Zr Aluminum Alloy

  • Ghosh, Rahul;Venugopal, A.;Pradeep, PI;krishna, L. Rama;Narayanan, P. Ramesh;Pant, Bhanu;Cherian, Roy M
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.101-108
    • /
    • 2018
  • AA7010 is an Al-Zn-Mg-Cu alloy containing Zr, developed as an alternate to traditional AA7075 alloy owing to their high strength combined with better fracture toughness. It is necessary to improve the corrosion resistance and surface properties of the alloy by incorporating plasma electrolytic oxidation (PEO) method. AA7010-T7452 aluminum alloy has been processed through the forging route with multi-stage working operations, and was coated with $10{\mu}m$ thick $Al_2O_3$ ceramic aluminina coating using the plasma electrolytic oxidation (PEO) method. The corrosion, stress corrosion cracking (SCC) and nano-mechanical behaviours were examined by means of potentiodynamic polarization, slow strain rate test (SSRT) and nano-indentation tests. The results indicated that the additional thermomechanical treatment during the forging process caused a fully recrystallized microstructure, which lead to the poor environmental cracking resistance of the alloy in 3.5% NaCl solution, despite the overaging treatment. Although the fabricated PEO coating improved general corrosion resistance, the brittle nature of the coating did not provide any improvement in SCC resistance of the alloy. However, the hardness and elastic modulus of the coating were significantly higher than the base alloy.

Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM

  • Byeon, Seon-Mi;Song, Jae-Joo
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • The computer-aided design/computer-aided manufacturing (CAD/CAM) system was introduced to shorten the production time of all-ceramic restorations and the number of patient visits. Among these types of ceramic for dental CAD/CAM, they have been processed into inlay, onlay, and crown shapes using leucite-reinforced glass-ceramics to improve strength. The purpose of this study was to observe the mechanical properties and microstructure of leucite-reinforced glass-ceramics for dental CAD/CAM. Two types of leucite-reinforced glass-ceramic blocks (IPS Empress CAD, Rosetta BM) were prepared with diameter of 13 mm and thickness of 1 mm. Biaxial flexural testing was conducted using a piston-on-three-ball method at a crosshead speed of 0.5 mm/min. Weibull statistics were used for the analysis of biaxial flexural strength. Fracture toughness was obtained using an indentation fracture method. Specimens were observed by field emission scanning electron microscopy to examine the microstructure of the leucite crystalline phase after acid etching with 0.5% hydrofluoric acid aqueous solution for 1 minute. The results of strength testing showed that IPS Empress CAD had a mean value of $158.1{\pm}8.6MPa$ and Rosetta BM of $172.3{\pm}8.3MPa$. The fracture toughness results showed that IPS Empress CAD had a mean value of $1.28{\pm}0.19MPa{\cdot}m^{1/2}$ and Rosetta BM of $1.38{\pm}0.12MPa{\cdot}m^{1/2}$. The Rosetta BM sample exhibited higher strength and fracture toughness. Moreover, the crystalline phase size and ratio were increased in the Rosetta BM sample. The above results are expected to elucidate the basic mechanical properties and crystal structure characteristics of IPS Empress CAD and Rosetta BM. Additionally, they will help develop leucite-reinforced glass-ceramic materials for CAD/CAM.

Stress gradient relaxation and property modification of polysilicon films by ion implantation (이온 주입에 의한 다결정 실리콘의 응력 구배 완화 및 물성 개선)

  • Seok, Ji-Won;Gang, Tae-Jun;Lee, Sang-Jun;Lee, Jae-Hyeong;Lee, Jae-Sang;Han, Jun-Hui;Lee, Ho-Yeong;Kim, Yong-Hyeop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.10
    • /
    • pp.73-78
    • /
    • 2003
  • MEMS technology in the field of aerospace engineering is more important with light weight and high resolution. Therefore the investigation of thin films properties is issued and the residual stress of thin filrns is one of the important problems to solve. Ion implantation without thermal annealing is applied for the stress gradient relaxation of LPCVD polysilicon films used as the structural part in MEMS. He+ and Ar+ ion implantations reduce the stress gradient of polysilicon films. The property modification of polysilicon films by ion implantation is also investigated. The elastic modulus and hardness of polysilicon films with ion implantation is studied by CSM method which is an advanced nano-indentation method. Ion implantation decreases the elastic modulus and hardness of polysilicon films. However, they are improved with increasing ion dose.

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L;Bushby, Andrew J;P'ng, Ken MY;Wilson, Rory M;Tanner, K Elizabeth;Cattel, Michael J
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.6
    • /
    • pp.479-488
    • /
    • 2016
  • PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

Development of Extra High Voltage(400kN) Porcelain Insulator for Transmission Lines (765 kV용 400 kN 현수애자 개발)

  • 최인혁;최장현;이동일;최연규
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.8
    • /
    • pp.348-353
    • /
    • 2003
  • This paper was the research of high voltage suspension insulator (400 [kN]) including pottery stone, feldspar, clay and alumina of 17 [wt%]. The slurry was fabricated after ball milling mixed raw materials. Green compacts were made by the extrusion of jiggering method and were sintered at 1300[$^{\circ}C$] for 50 [min.] in the tunnel kiln. The sintered density was reached to 97% of theoretical density, and the bending strength was 1658 [k $g_{f}$/$\textrm{cm}^2$] and hardness and fracture toughness which was measured by ICL( indentation crack length ) method were 1658 (kgf/$\textrm{cm}^2$) and 27.5 [Gpa], respectively. In measurement of tana and insulation break voltage of 400 (kN) porcelain, tan$\delta$ took some numerical value between 17${\times}$10$_{-3}$ and 61${\times}$10$_{-3}$ and insulation break voltage value was 19.9$\pm$1.4 [㎸/mm]. The test was performed to research whether the shape of pin affect a overvoltage break load or not As a consequence, when a pin was designed a pin diameter 51 [mm] with the bottom form of two-step constructed with straight in the suspension insulator, Insulator showed overvoltage break load 52 [ton] of the highest value and reflected a fine characteristic in aged deterioration test which is one of the accelerated aging test. Also it could be confirmed a fine characteristic through performing the test that electrical property of insulator was established correctly in accordance with IEC 60383-1 standards.s.