DOI QR코드

DOI QR Code

Interfacial modulus mapping of layered dental ceramics using nanoindentation

  • Theocharopoulos, Antonios L (School of Engineering and Materials Science, Queen Mary University of London) ;
  • Bushby, Andrew J (School of Engineering and Materials Science, Queen Mary University of London) ;
  • P'ng, Ken MY (School of Engineering and Materials Science, Queen Mary University of London) ;
  • Wilson, Rory M (School of Engineering and Materials Science, Queen Mary University of London) ;
  • Tanner, K Elizabeth (Department of Civil and Mechanical Engineering, University of Glasgow) ;
  • Cattel, Michael J (Barts & The London School of Dentistry, Centre for Adult Oral Health)
  • Received : 2016.05.13
  • Accepted : 2016.11.02
  • Published : 2016.12.30

Abstract

PURPOSE. The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS. YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A $5{\mu}m$ (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load - partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X - ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS. A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of $40{\mu}m$ in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION. The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces.

Keywords

References

  1. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2004;92:557-62. https://doi.org/10.1016/j.prosdent.2004.09.015
  2. Sundh A, Sjogren G. Fracture resistance of all-ceramic zirconia bridges with differing phase stabilizers and quality of sintering. Dent Mater 2006;22:778-84. https://doi.org/10.1016/j.dental.2005.11.006
  3. Att W, Grigoriadou M, Strub JR. ZrO2 three-unit fixed partial dentures: comparison of failure load before and after exposure to a mastication simulator. J Oral Rehabil 2007;34:282-90. https://doi.org/10.1111/j.1365-2842.2006.01705.x
  4. Heintze SD, Rousson V. Survival of zirconia- and metal-supported fixed dental prostheses: a systematic review. Int J Prosthodont 2010;23:493-502.
  5. Suarez MJ, Lozano JF, Paz Salido M, Martinez F. Three-year clinical evaluation of In-Ceram Zirconia posterior FPDs. Int J Prosthodont 2004;17:35-8.
  6. Taskonak B, Sertgoz A. Two-year clinical evaluation of lithia-disilicate-based all-ceramic crowns and fixed partial dentures. Dent Mater 2006;22:1008-13. https://doi.org/10.1016/j.dental.2005.11.028
  7. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  8. Beuer F, Edelhoff D, Gernet W, Sorensen JA. Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs). Clin Oral Investig 2009;13:445-51. https://doi.org/10.1007/s00784-009-0249-5
  9. Spies BC, Stampf S, Kohal RJ. Evaluation of Zirconia-Based All-Ceramic Single Crowns and Fixed Dental Prosthesis on Zirconia Implants: 5-Year Results of a Prospective Cohort Study. Clin Implant Dent Relat Res 2015;17:1014-28. https://doi.org/10.1111/cid.12203
  10. Kelly JR, Tesk JA, Sorensen JA. Failure of all-ceramic fixed partial dentures in vitro and in vivo: analysis and modeling. J Dent Res 1995;74:1253-8. https://doi.org/10.1177/00220345950740060301
  11. Proos K, Steven G, Swain M, Ironside J. Preliminary studies on the optimum shape of dental bridges. Comput Methods Biomech Biomed Engin 2000;4:77-92.
  12. Guazzato M, Proos K, Sara G, Swain MV. Strength, reliability, and mode of fracture of bilayered porcelain/core ceramics. Int J Prosthodont 2004;17:142-9.
  13. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984-91. https://doi.org/10.1016/j.dental.2005.03.013
  14. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  15. Guess PC, Kulis A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater 2008;24:1556-67. https://doi.org/10.1016/j.dental.2008.03.028
  16. Thompson GA. Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 2000;16:235-43. https://doi.org/10.1016/S0109-5641(00)00005-1
  17. Guazzato M, Proos K, Quach L, Swain MV. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomaterials 2004;25:5045-52. https://doi.org/10.1016/j.biomaterials.2004.02.036
  18. Carrier DD, Kelly JR. In-Ceram failure behavior and core-veneer interface quality as influenced by residual infiltration glass. J Prosthodont 1995;4:237-42. https://doi.org/10.1111/j.1532-849X.1995.tb00348.x
  19. Wakabayashi N, Anusavice KJ. Crack initiation modes in bilayered alumina/porcelain disks as a function of core/veneer thickness ratio and supporting substrate stiffness. J Dent Res 2000;79:1398-404. https://doi.org/10.1177/00220345000790060801
  20. Lawn BR, Pajares A, Zhang Y, Deng Y, Polack MA, Lloyd IK, Rekow ED, Thompson VP. Materials design in the performance of all-ceramic crowns. Biomaterials 2004;25:2885-92. https://doi.org/10.1016/j.biomaterials.2003.09.050
  21. Studart AR, Filser F, Kocher P, Luthy H, Gauckler LJ. Mechanical and fracture behavior of veneer-framework composites for all-ceramic dental bridges. Dent Mater 2007;23:115-23. https://doi.org/10.1016/j.dental.2005.12.009
  22. Kohorst P, Dittmer MP, Borchers L, Stiesch-Scholz M. Influence of cyclic fatigue in water on the load-bearing capacity of dental bridges made of zirconia. Acta Biomater 2008;4:1440-7. https://doi.org/10.1016/j.actbio.2008.04.012
  23. Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P, Vanherle G. Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 1993;72:1434-42. https://doi.org/10.1177/00220345930720101401
  24. Marshall GW Jr, Balooch M, Gallagher RR, Gansky SA, Marshall SJ. Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J Biomed Mater Res 2001;54:87-95. https://doi.org/10.1002/1097-4636(200101)54:1<87::AID-JBM10>3.0.CO;2-Z
  25. Angker L, Swain MV. Nanoindentation: Application to dental hard tissue investigations. J Mater Res 2006;21:1893-905. https://doi.org/10.1557/jmr.2006.0257
  26. He LH, Swain MV. Nanoindentation derived stress-strain properties of dental materials. Dent Mater 2007;23:814-21. https://doi.org/10.1016/j.dental.2006.06.017
  27. Pongprueksa P, Kuphasuk W, Senawongse P. The elastic moduli across various types of resin/dentin interfaces. Dent Mater 2008;24:1102-6. https://doi.org/10.1016/j.dental.2007.12.008
  28. Kirsten A, Parkot D, Raith S, Fischer H. A cusp supporting framework design can decrease critical stresses in veneered molar crowns. Dent Mater 2014;30:321-6. https://doi.org/10.1016/j.dental.2013.12.004
  29. Kim JW, Bhowmick S, Hermann I, Lawn BR. Transverse fracture of brittle bilayers: relevance to failure of all-ceramic dental crowns. J Biomed Mater Res B Appl Biomater 2006;79:58-65.
  30. Wang G, Zhang S, Bian C, Kong H. Interface toughness of a zirconia-veneer system and the effect of a liner application. J Prosthet Dent 2014;112:576-83. https://doi.org/10.1016/j.prosdent.2013.12.010
  31. Field JS, Swain MV. Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J Mater Res 1995;10:101-12. https://doi.org/10.1557/JMR.1995.0101
  32. Fischer-Cripps AC. Nanoindentation. New York: Springer-Verlag; 2004. p. 21-38, 69-91.
  33. Bushby AJ. Nano-indentation using spherical indenters. Nondest Test Eval 2001;17:213-34. https://doi.org/10.1080/10589750108953112
  34. Alguero M, Bushby AJ, Reece MJ. Direct measurement of mechanical properties of (Pb,La)TiO3 ferroelectric thin films using nanoindentation techniques. J Mater Res 2001;16:993-1002. https://doi.org/10.1557/JMR.2001.0140
  35. Bushby AJ, Jennett NM. Determining the area function of spherical indenters for Nanoindentation. MRS Proc: Mater Res Soc; 2001b. p. Q7.17.1-6.
  36. Kosmac T, Oblak C, Jevnikar P, Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater 1999;15:426-33. https://doi.org/10.1016/S0109-5641(99)00070-6
  37. Luthardt RG, Holzhuter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater 2004;20:655-62. https://doi.org/10.1016/j.dental.2003.08.007
  38. Guazzato M, Quach L, Albakry M, Swain MV. Influence of surface and heat treatments on the flexural strength of Y-TZP dental ceramic. J Dent 2005;33:9-18. https://doi.org/10.1016/j.jdent.2004.07.001
  39. Papanagiotou HP, Morgano SM, Giordano RA, Pober R. In vitro evaluation of low-temperature aging effects and finishing procedures on the flexural strength and structural stability of Y-TZP dental ceramics. J Prosthet Dent 2006;96:154-64. https://doi.org/10.1016/j.prosdent.2006.08.004
  40. de Kler M, de Jager N, Meegdes M, van der Zel JM. Influence of thermal expansion mismatch and fatigue loading on phase changes in porcelain veneered Y-TZP zirconia discs. J Oral Rehabil 2007;34:841-7. https://doi.org/10.1111/j.1365-2842.2006.01675.x
  41. Oliver WC, Pharr GM. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J Mater Res 2004;19:3-20. https://doi.org/10.1557/jmr.2004.19.1.3
  42. Fischer-Cripps AC. Critical review of analysis and interpretation of nanoindentation test data. Surf Coat Tech 2006;200:4153-65. https://doi.org/10.1016/j.surfcoat.2005.03.018
  43. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part I. Pressable and alumina glass-infiltrated ceramics. Dent Mater 2004;20:441-8. https://doi.org/10.1016/j.dental.2003.05.003
  44. Lawn BR, Deng Y, Thompson VP. Use of contact testing in the characterization and design of all-ceramic crownlike layer structures: a review. J Prosthet Dent 2001;86:495-510. https://doi.org/10.1067/mpr.2001.119581
  45. Holand W, Schweiger M, Frank M, Rheinberger V. A comparison of the microstructure and properties of the IPS Empress 2 and the IPS Empress glass-ceramics. J Biomed Mater Res 2000;53:297-303. https://doi.org/10.1002/1097-4636(2000)53:4<297::AID-JBM3>3.0.CO;2-G
  46. Holand W, Rheinberger V, Wegner S, Frank M. Needle-like apatite-leucite glass-ceramic as a base material for the veneering of metal restorations in dentistry. J Mater Sci Mater Med 2000;11:11-7.
  47. Muller R, Abu-Hilal LA, Reinsch S, Holand W. Coarsening of needle-shaped apatite crystals in SiO2 - Al2O3 - Na2O - K2O - CaO - P2O5 - F glass. J Mater Sci 1999;34:65-9. https://doi.org/10.1023/A:1004457305970
  48. Esposito L, Bellosi A. Interfacial characteristics in ceramic joining with glass interlayers. Ceram Eng Sci Proc (USA) 2002;23:793-800.
  49. Swab JJ. Low temperature degradation of Y-TZP materials. J Mater Sci 1991;26:6706-14. https://doi.org/10.1007/BF02402664
  50. Dukino RD, Swain MV. Comparative measurement of indentation fracture toughness with Berkovich and Vickers indenters. J Am Ceram Soc 1992;75:3299-304. https://doi.org/10.1111/j.1151-2916.1992.tb04425.x