• Title/Summary/Keyword: Incremental cure

Search Result 9, Processing Time 0.031 seconds

Influence of Thickness on the Degree of Cure of Composite Resin Core Material (코어용 레진의 두께가 중합에 미치는 영향)

  • Kwon, Pyoung-Cheol;Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.5
    • /
    • pp.352-358
    • /
    • 2006
  • The purpose of this study was to investigate the influence of thickness on the degree of cure of dual-cured composite core. 2, 4, 6, 8 mm thickness Luxacore Dual and Luxacore Self (DMG Inc, Hamburg, Germany) core composites were cured by bulk or incremental filling with halogen curing unit or self-cure mode The specimens were stored at $37^{\circ}C$ for 24 hours and the Knoop's hardness of top and bottom surfaces were measured. The statistical analysis was performed using ANOVA and Tukey's test at p = 0.05 significance level. In self cure mode, polymerization is not affected by the thickness. In Luxacore dual, polymerization of the bottom surface was effective in 2, 4 and 6 (incremental) mm specimens. However the 6 (bulk) and 8 (bulk, incremental) mm filling groups showed lower bottom/top hardness ratio (p < 0.05). Within the limitation of this experiment, incremental filling is better than bulk filling in case of over 4 mm depth, and bulk filling should be avoided.

Curing Induced Residual Stresses in Laminated Cylindrical Shells

  • Lee, Soo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.19-29
    • /
    • 2000
  • A viscoelastic finite element analysis is presented to investigate residual stresses occurred in a laminated cylindrical shell during cure. An incremental viscoelastic constitutive equation that can describe stress relaxation during the cure is derived as a recursive formula which can be used conveniently for a numerical analysis. The finite element analysis program is developed on the basis of a 3-D degenerated shell element and the first order shear deformation theory, and is verified by comparing with an one dimensional exact solution. Viscoelastic effect on the residual stresses in the laminated shell during the cure is investigated by performing both the viscoelastic and linear elastic analyses considering thermal deformation and chemical shrinkage simultaneously. The results show that there is big difference between viscoelastic stresses and linear elastic stresses. The effect of cooling rates and cooling paths on the residual stresses is also examined.

  • PDF

THE EFFECT OF POLYMERIZATION TECHNIQUES ON THE MICROLEAKAGE OF COMPOMER (광중합방식이 콤포머의 변연폐쇄에 미치는 영향)

  • 조옥환;한진순;임미경;이수종
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.1
    • /
    • pp.32-40
    • /
    • 2001
  • The aim of this study was to evaluate the effect of various polymerization techniques on the microleakage of compomer restorations. Fifty extracted human premolars and molar were used and randomly divided into 5 groups. After cavity preparation, compomer (F2000$^{\circledR}$) was filled according to the manufacturer's directions. All groups, except group 5, were filled using an incremental technique. Group 1 was polymerized for 40 seconds at a continuous 485mW/$\textrm{cm}^2$ with a VIP$^{\circledR}$(Bisco, USA) light cure unit. Group 2 was polymerized for 20 seconds at 345mW/$\textrm{cm}^2$ and then for 20 seconds at 645mW/$\textrm{cm}^2$ with the VIP equation omitted light cure unit. Group 3 was polymerized at 400mW/$\textrm{cm}^2$, gradually increased to 50mW/$\textrm{cm}^2$ 10 seconds until 550mW/$\textrm{cm}^2$ was reached; total 40 seconds with a Spectrum 800$^{\circledR}$ (Dentsply Caulk, USA) light cure unit. Group 4 was polymerized for 3 seconds using an incremental technique with a Flipo$^{\circledR}$ (LOKKi, France) light cure unit. Group 5 was polymerized for 3 seconds using a bulk fill technique with the Flipo$^{\circledR}$ light cure unit. The specimens were embedded with acrylic resin, and were sectioned with diamond saws in a mesiodistal direction along the longitudinal axis of the tooth so as to pass through the center of the restoration, and three surfaces (occlusal, pulpal, and gingival) were examined with SEM. The results were as follows ; 1. Group 5 showed a significantly larger gaps compared to other groups on the gingival, occlusal, and pulpal walls. 2. All groups except group 5 had no statistically significant gap on the gingival, occlusal, and pulpal walls. 3. There was no significant correlation between the amount of enamel on the gingival and occlusal walls and polymerization shrinkage.

  • PDF

THE INFLUENCE OF CURING WITH LIGHT TRANSMITTING WEDGE INSERTED INTO THE COMPOSITE RESIN BODY ON THE DEGREE OF MICROLEAKAGE AND MICROHARDNESS (광 전달 쐐기를 이용한 중합 방법이 레진 충전물의 미세 누출과 미세 경도에 미치는 효과)

  • Suh, Yong-Seok;Kim, Yong-Kee;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.731-748
    • /
    • 1998
  • The purpose of this study was to test the hypothesis that the more thorough cure of lightactivated composite resin could be obtained if a new way of delivering the light source deep through the resin body is developed when compared to the conventional bulk cure or incremental cure. Using cylindrical resin blocks and natural teeth, various curing conditions were tested for their effects on the degree of microleakage and microhardness. Data were analyzed statistically using One-Way ANOVA and Scheff's Multiple Range test. The results of the present study were as follows: 1. The increment of reduction in microhardness with depth was shown to be higher in group I and II than in group II and V. 2. At the level of lower inner surface and the bottom surface, significantly lower microhardness values were obtained in group I and II when compared to group III, IV and V. Group IV showed the lowest value among three groups(III, IV, V) representing the only statistically significant difference from group V(p<05). 3. Differences between groups in the degree of microleakage detected were shown to be statistically significant (p<05) with the exception of group IV and V at both occlusal and gingival margins. 4. Based upon the above-mentioned results, commonly cited recommendation of incremental curing is strongly supported and the light-transmitting wedge insertion method can be considered as a effective and feasible clinical procedure for the better curing of composite resin. However, more studies under a variety of conditions should be completed before this method is applied actually to the clinical setting.

  • PDF

A Study of Thermo-rheological Behaviour from Long Term Responses of Solid Composite Propellant (고체 추진제 장시간 물성거동 반응 연구)

  • Ryu, Taeha;Kim, Nakhyun;Khil, Taeock;Choi, Yongkyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.8-16
    • /
    • 2017
  • Structural integrity of solid rocket depends on the residual reactions between constituents of its composition(post cure, migration etc.), the oxygen(or anti-oxydent) in the free volume and humidity (desiccant) under the perfect sealed condition. Mechanical Properties of composite solid propellant arising from those factors are very complex. Moreover the propulsion are faced with thermal loads from diurnal & seasonal cycle till firing. In this study, the fast evaluation method of long term mechanical properties is suggested based on Thermo-Rheological Simplicity from curing oven to cool-down stage in view point of thermal stabilization. For this subject, endurance tester having temperature control capability are devised. From the results from incremental load and strain, non-linear characteristics are discussed.

INFLUENCE OF CAVITY SIZE AND RESTORATION METHODS ON THE CUSP DEFLECTION IN COMPOSITE RESTORATION (복합레진 수복시 와동의 크기 및 수복 방법이 교두 굴곡에 미치는 영향)

  • Lee Mi-Ra;Lee In-Bog;Seok Chang-In;Lee Sang-Tag;Um Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.6
    • /
    • pp.532-540
    • /
    • 2004
  • The aim of this study was to measure the cusp deflection during composite restoration for MOD cavity in premolar and to examine the influence of cavity dimension, C-factor and restoration method on the cusp deflection. Thirty extracted maxillary premolar were prepared to four different sizes of MOD cavity and divided into six groups. The width and depth of the cavity were as follows. Group 1; $1.5{\;}{\times}{\;}1{\;}mm$, Group 2; $1.5{\;}{\times}{\;}2{\;}mm$, Group 3; $3{\;}{\times}{\;}1{\;}mm$, and Group 4-6; $3{\;}{\times}{\;}2{\;}mm$ respectively. Group 1-4 were restored using bulk filling method with Z-250 composite. However, Group 5 was restored incrementally, and Group 6 was restored with an indirect resin inlay. The cusp deflection was recorded at the buccal and lingual cusp tips using LVDT probe for 10,000 seconds. The measured cusp deflections were compared between groups, and the relationship between the cube of the length of cavity wall/the cube of the thickness of cavity wall ($L^3/T^3$). C-factor and cusp deflection or % flexure ($100{\;}{\times}$ cuspal deflection / cavity width) was analyzed. The cusp deflection of Group 1-4 were $12.1{\;}\mu\textrm{m},{\;}17.2{\;}\mu\textrm{m},{\;}16.2{\;}\mu\textrm{m}{\;}and{\;}26.4{\;}\mu\textrm{m}$ respectively. The C-factor was related to the % flexure rather than the cusp deflection. There was a strong positive correlationship between the $L^3/T^3$ and the cusp deflection. The cusp deflection of Group 5 and 6 were $17.4{\;}\mu\textrm{m}{\;}and{\;}17.9{\;}\mu\textrm{m}$ respectively, which are much lower value than that of Group 4.

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}$= 0.05. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

Polymerization of dual cured composites by different thickness (두께에 따른 이중 중합형 복합레진의 중합)

  • Kim, Yun-Ju;Jin, Myoung-Uk;Kim, Sung-Kyo;Kwon, Tae-Yub;Kim, Young-Kyung
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.169-176
    • /
    • 2008
  • The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test. Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at $37^{\circ}C$ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with ${\alpha}=0.05$. The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

  • PDF

Evaluation of Microhardness of Bulk-base Composite Resins According to the Depth of Cure (Bulk-base 복합 레진의 중합 깊이에 따른 미세경도 평가)

  • No, Yoomi;Shin, Bisol;Kim, Jongsoo;Yoo, Seunghoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.335-340
    • /
    • 2017
  • Composite resin becomes an essential material in pediatric dentistry. However, incremental filling of composite resin to minimize the polymerization shrinkage takes time. To reduce the polymerization shrinkage, clinicians and researchers have focused on bulk-filling materials. Bulk-base composite resin is newly introduced as bulk-filling composite resin. The purpose of this study was to evaluate microhardness profile of bulk-base composite resin according to the depth of cure. A high flow bulk-base material and a low flow bulk-base material were used for experimental group, and a conventional composite resin was used for control group. Each group consist of 20 specimens, $3.5{\times}3.5{\times}5.0mm$ mold was used to make specimen. Specimens were sectioned at the 2 mm and the 3 mm depth with milling machine. Microhardness profile was measured at the surface, 2 mm depth, 3 mm depth, and 4 mm depth. Microhardness of control group showed statistically significant difference (p < 0.05) according to the polymerization depth. In contrast, experimental group showed no statistically significant difference, except between 0 mm and 4 mm at HFB, 0 mm and 2 mm, 0 mm and 3 mm at MFB. At the surface and the 2 mm depth, the control group showed higher microhardness than the experimental groups (p < 0.05). However, at the 4 mm depth, the experimental groups showed significantly higher microhardness (p < 0.05). The results from this study, the bulk-base composite resin showed higher microhardness at the 4 mm and lower microhardness at the surface and the 2 mm depth. Therefore, if bulk-base resin overcomes the mechanical weakness, it could be considered using in pediatric dentistry.