• Title/Summary/Keyword: Incremental Forming

Search Result 121, Processing Time 0.028 seconds

3-D Finite Element Analysis of Superplastic Forming/Diffusion Bonding Processes with Consideration of Contact between Deformable Bodies (변형체간의 접촉을 고려한 3차원 초소성 성형/확산접합의 유한요소해석)

  • Kang, Yung-Kil;Song, Jae-Sun;Hong, Sung-Suk;Kim, Yong-Hwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Superplastic forming/diffusion bonding(SPF/DB) processes with inner contact were analyzed using a 3-D rigid visco-plastic finite element method. A constant-triangular element based on membrane approximation and an incremental theory of plasticity are employed for the formulation. The hierarchical search algorithm for the contact searching has been applied. The algorithms for contact force processing were designed to handle equally well contact between deformable bodies, as well as rigid bodies. The plate of three and four sheets for 3-D SPF/DB model are analyzed using the developed program. The validity for the analysis is verified by comparison between analysis, experiment and results in the literature.

The Process Planning of Disc Spinning for a Large Wheel of Automobile (자동차용 대형 휠 디스크의 스피이닝 설계)

  • 이항수
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.06b
    • /
    • pp.28-42
    • /
    • 1998
  • Spinning is one of the incremental forming process by the rotating mandrel and forming roller, and has been applied to manufacturing the wheel disc of automobile to simplify the manufacturing process and to improve the mechanical properties of product. In the proesent study the process variables have been extracted and considered to decide the specification of the spinning machine. The maximum values of working load and power have been evaluated and the blank size has been disigned. The shape and dimensionof forming roller have been designed and the process condition such a s rotational velocity of mandrel and the feedrate of roller have been decided.

  • PDF

Design of automotive inner panel by sectional forming analysis (단면성형 해석에 의한 자동차 내부 판넬의 설계)

  • 금영탁;왕노만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.6
    • /
    • pp.48-59
    • /
    • 1990
  • A finite element program was developed using line elements for simulating the stretch/draw forming operation of an arbitrarily-shaped plane-strain section. An implicit, incremental, updated Lagrangian formulation is employed, introducing a minimum plastic work path assumption for each time step. Geometric and material nonlinearities are also considered within each time step. The finite element equation is based on the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshes without depending on the explicit spatial derivatives of tool surfaces. The membrane approximation is adopted under the plane stress assumption. The sheet material is assumed to obey a rigid-viscoplastic constitutive law. The developed program was tested in the die-tryout of typical automotive inner panels. In order to determine a single friction coefficient and boundary length, FEM results and measurements of thinning for a stretched section of final die were compared. After finding analysis parameters, the sheet forming operations of original and final die designs were simulated. Excellent agreement between measured and computed thickness strains was obtained and the developed program was able to identify die designs which were rejected during die tryout.

  • PDF

Spring-back prediction for sheet metal forming process using hybrid membrane/shell method (하이브리드 박막/쉘 방법을 이용한 박판성형공정의 스프링백 해석)

  • F. Pourboghrat
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.62-65
    • /
    • 1999
  • To reduce the cost of finite element analyses for sheet forming a 3D hybrid membrance/sheel method has been developed to study the springback of anisotropic sheet metals. in the hybrid method the bending strains and stresses were analytically calculated as post-processing using incremental shapes of the sheet obtained previously from the membrane finite element analysis. To calculate springback a shell finite element model was used to unload the final shape of the sheet obtained from the membran code and the stresses and strains that were calculated analytically. For verification the hybrid method was applied to predict the springback of a 2036-T4 aluminum square blank formed into a cylindrical cup. the springback predictions obtained with the hybrid method was in good agreement with results obtained using a full shell model to simulateboth loading an unloading and the experimentally measured data. The CPU time saving with the hybrid method over the full shell model was 75% for the punch stretching problem.

  • PDF

Development of Delaunay Triangulation Algorithm Using Oct-subdivision in Three Dimensions (3차원 8분할 Delaunay 삼각화 알고리즘 개발)

  • Park S.H.;Lee S.S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.3
    • /
    • pp.168-178
    • /
    • 2005
  • The Delaunay triangular net is primarily characterized by a balance of the whole by improving divided triangular patches into a regular triangle, which closely resembles an equiangular triangle. A triangular net occurring in certain, point-clustered, data is unique and can always create the same triangular net. Due to such unique characteristics, Delaunay triangulation is used in various fields., such as shape reconstruction, solid modeling and volume rendering. There are many algorithms available for Delaunay triangulation but, efficient sequential algorithms are rare. When these grids involve a set of points whose distribution are not well proportioned, the execution speed becomes slower than in a well-proportioned grid. In order to make up for this weakness, the ids are divided into sub-grids when the sets are integrated inside the grid. A method for finding a mate in an incremental construction algorithm is to first search the area with a higher possibility of forming a regular triangular net, while the existing method is to find a set of points inside the grid that includes the circumscribed sphere, increasing the radius of the circumscribed sphere to a certain extent. Therefore, due to its more efficient searching performance, it takes a shorer time to form a triangular net than general incremental algorithms.

An Analysis of Formability of Micro Pattern Forming on the Thin Sheet Metal (마이크로 박판 미세 패턴 성형공정의 성형성에 대한 해석적 연구)

  • Cha, Sung-Hoon;Shin, Myung-Soo;Kim, Jong-Ho;Lee, Hye-Jin;Kim, Jong-Bong
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.384-390
    • /
    • 2009
  • Roll-to-roll forming process is one of important metal processing technology because the process is simple and economical. These days, with these merits, roll-to-roll forming process is tried to be employed in manufacturing the circuit board, barrier ribs and solar cell plate. The solar cell plate may have millions of patterns, and the analysis of forming considering all the patterns is impossible due to the computational costs. In this study, analyses are carried out for various numbers of patterns and the results are compared. It is shown that the analyses results with four row patterns and twelve row patterns are same. So, it is considered that the analysis can be carried out for only four rows of pattern for the design of incremental roll-to-roll forming process. Also formability is analysed for various number of mesh, protrusion shapes and forming temperature.

Development of Contact Algorithms for Three Dimensional Surfaces (삼차원 곡면에 대한 접촉해석기법의 개발)

  • 박채현;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.157-164
    • /
    • 1994
  • Finite element analysis of material deformation is successfully utilized to understand metal forming processes such as forging, extrusion and deep drawing. However, such analysis involves contact problems; a free node touches a die surface and a contact node slips along the die surface. In the present investigation, appropriate contact algorithms were developed assuming that a three dimensional surface can be divided into bilinear patches and that nodal velocities are linear during an incremental time. The algorithms were coded into a computer program and tested for a simple surface. Comparison of the test result with that obtained from a commercial code is presented and discussed.

  • PDF

Plane Strain Analysis of Thin Sheet Forming with Arbitrary Conditions (임의 조건으로 성형되는 박판의 평면변형률 해석)

  • ;;R. H. Wagoner
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.201-212
    • /
    • 1992
  • The plane strain analysis for simulating the stretch/draw forming operation of arbitrarily-shaped tool profiles and arbitrarily draw-in conditions is introduced. An implicit, incremental, updated Lagrangian formulation is employed, introducing a rigid-viscoplastic constitutive equation. Contact and friction are considered through the mesh-normal, which compatibly describes arbitrary tool surfaces and FEM meshe without depending on the explicit spatial derivatives of tool surfaces. The FEM formulation is tested in the sections automotive inner panel and two-side draw-in. Not only the excellent agreement between measured and computed strains in the stretched section is obtained, but also the numerical stability of current formulation is verified in the two-side draw-in section.

  • PDF