• 제목/요약/키워드: Inclined sliding surface

검색결과 16건 처리시간 0.019초

Expansion of Terzaghi Arching Formula to Consider an Arbitrarily Inclined Sliding Surface and Examination of its Effect

  • Son, Moorak
    • 한국지반환경공학회 논문집
    • /
    • 제17권7호
    • /
    • pp.27-33
    • /
    • 2016
  • This study expanded Terzaghi arching formula, which assumed a vertical surface as a sliding surface, to consider an arbitrarily inclined surface as a sliding surface and examined the effect of a sliding surface. This study firstly developed a formula to expand the existing Terzaghi arching formula to consider an inclined surface as well as a vertical surface as a sliding surface under the downward movement of a trap door. Using the expanded formula, the effect of excavation, ground, and surcharge conditions on a vertical stress was examined and the results were compared with them from Terzaghi arching formula. The comparison indicated that the induced vertical stress was highly affected by the angle of an inclined sliding surface and the degree of influence depended on the excavation, ground, and surcharge conditions. It is expected that the results from this study would provide a better understanding of various arching phenomenon in the future.

비등방 지반에서 터널굴착을 위한 3차원 아칭식의 유도 및 그 영향 조사 (Derivation of a 3D Arching Formula for Tunnel Excavation in Anisotropic Ground Conditions and Examination of Its Effects)

  • 손무락
    • 한국지반공학회논문집
    • /
    • 제34권12호
    • /
    • pp.19-27
    • /
    • 2018
  • 테르쟈기는 트랩도어 처짐에 기반한 상부지반의 수직활동면을 가정한 2차원 아칭식을 제안하였다. 이후 관련 식은 3차원 터널굴착조건과 경사활동면을 고려할 수 있도록 확장되었다. 본 연구에서는 3차원 터널굴착조건에서 비등방지반조건을 반영하여 터널 횡방향 및 종방향에서의 지반물성치 및 활동면의 경사각을 달리하여 고려할 수 있도록 더욱 확장된 아칭식을 유도하고 제시하였다. 제시된 식을 이용하여 다양한 조건(지반물성치, 경사활동면, 굴착조건, 상재하중, 토압계수)에서 발생되는 수직응력에 대해 조사하였고 테르쟈기의 2차원 아칭식과도 비교하였다. 조사결과, 발생 수직응력은 굴착폭 및 굴착길이, 경사각, 상재하중이 증가할수록 증가했고 점착력과 마찰각, 토압계수가 감소할수록 증가하였으며, 굴착길이가 작을 때와 횡방향 지반물성치에 의해서 더 큰 영향을 받는 것으로 나타났다. 또한 테르쟈기 2차원 아칭식과 비교하여 발생 수직응력은 더 작은 것으로 나타났고 그 차이정도는 지반물성치, 경사활동면, 3차원 터널굴착 조건에 따라 매우 큰 영향을 받는 것으로 나타났다. 제시된 3차원 아칭식은 터널굴착으로 인한 복잡한 아칭현상을 보다 잘 이해하는데 도움을 줄 수 있을 것으로 판단된다.

사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석 (Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • 설비공학논문집
    • /
    • 제13권10호
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제1보 - 그루브 위치의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 1 - Effect of Groove Position)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.376-381
    • /
    • 2019
  • Surface texturing is widely applied to reduce friction and improve the reliability of machine elements. Despite extensive theoretical studies to date, most research has been limited to parallel thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and the hydrodynamic pressure is mainly generated by the wedge action. The results of surface texturing on inclined slider bearings are largely insufficient. This paper is the first part of a recent study focusing on the effect of the groove position on the lubrication performances of inclined slider bearings. We model a slider bearing with one rectangular groove on a fixed pad and analyze the continuity and Navier-Stokes equations using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the film convergence ratio and the groove position have a significant influence on the pressure and velocity distributions. There are groove positions to maximize the supporting load with the film convergence ratio and the groove reduces the frictional force acting on the slider. Therefore, the proper groove position not only improves the load-carrying capacity of the slider bearings but also reduces its frictional loss. The present results apply to various surface-textured sliding bearings and can lead to further studies.

Single Bubble Dynamic Behavior in AL2O3/H2O Nanofluid on Downward-Facing Heating Surface

  • Wang, Yun;Wu, Junmei
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.915-924
    • /
    • 2016
  • After a severe accident to the nuclear reactor, the in-vessel retention strategy is a key way to prevent the leakage of radioactive material. Nanofluid is a steady suspension used to improve heat-transfer characteristics of working fluids, formed by adding solid particles with diameters below 100nm to the base fluids, and its thermal physical properties and heat-transfer characteristics are much different from the conventional working fluids. Thus, nanofluids with appropriate nanoparticle type and volume concentration can enhance the heat-transfer process. In this study, the moving particle semi-implicit method-meshless advection using flow-directional local grid method is used to simulate the bubble growth, departure, and sliding on the downward-facing heating surface in pure water and nanofluid (1.0 vol.% $Al_2O_3/H_2O$) flow boiling processes; additionally, the bubble critical departure angle and sliding characteristics and their influence are also investigated. The results indicate that the bubble in nanofluid departs from the heating surface more easily and the critical departure inclined angle of nanofluid is greater than that of pure water. In addition, the influence of nanofluid on bubble sliding is not significant compared with pure water.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제2보 - 그루브 깊이의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 2 - Effect of Groove Depth)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제35권6호
    • /
    • pp.382-388
    • /
    • 2019
  • It is currently well known that surface textures act as lubricant reservoirs, entrap wear debris, and hydrodynamic bearings, which can lead to certain increases in load-carrying capacities. Until recently, the vast majority of research has focused on parallel sliding machine components such as thrust bearings, mechanical face seals, piston rings, etc. However, most sliding bearings have a convergent film shape in the sliding direction and their hydrodynamic pressure is mainly generated by the wedge action. Following the first part of the present study that investigates the effect of groove position on the lubrication performances of inclined slider bearings, this paper focuses on the effects of groove depths and film thicknesses. Using a commercial computational fluid dynamics (CFD) code, FLUENT, the continuity and Navier-Stokes equations are numerically analyzed. The results show that the film thickness and groove depth have a significant influence on the pressure distribution. The maximum pressure occurs at the groove depth where the vortex is found and, as the depth increases, the pressure decreases. There is also a groove depth to maximize the supporting load with the film thickness. The friction force acting on the slider decreases with deeper grooves. Therefore, properly designed groove depths, depending on the operating conditions, can improve the load-carrying capacity of inclined slider bearings as compared to the bearings without a groove.

미세 그루브가 있는 무한폭 Slider 베어링의 윤활해석: 제3보 - 그루브 형상의 영향 (Lubrication Analysis of Infinite Width Slider Bearing with a Micro-Groove: Part 3 - Effect of Groove Shape)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제36권4호
    • /
    • pp.193-198
    • /
    • 2020
  • Fluid film bearings are among the best devices used for overcoming friction and reducing wear. Surface texturing is a new surface treatment technique used for processing grooves and dimples on the lubricated surface, and it helps to minimize friction further and improve the wear resistance. In several studies, parallel surfaces, such as thrust bearings and mechanical face seals, have been investigated, but most sliding bearings have a convergent film shape. This paper presents the third part of a recent study and focuses on the effect of the groove shape on the lubrication performance of inclined slider bearings, following the two previous papers on the effects of the groove position and depth. We adopted the continuity and Navier - Stokes equations to conduct numerical analyses using FLUENT, which is a commercial computational fluid dynamics code. The groove shape adopted in the numerical analysis is rectangular and triangular, and its depth is varied. The results show that the streamlines, pressure distributions, and groove shape significantly influence the lubrication performance of the inclined slider bearing. For both shapes, the load-carrying capacity (LCC) is maximum near the groove depth, where vortices occur. In the shallow grooves, the LCC of the rectangular shape is higher, but in deeper grooves, that of the triangular shape is higher. The deeper the rectangular groove, the higher the decrease in the frictional force. The results of this study can be used as design data for various sliding bearings.

VARIATION OF LOCAL POOL BOILING HEAT TRANSFER COEFFICIENT ON 3-DEGREE INCLINED TUBE SURFACE

  • Kang, Myeong-Gie
    • Nuclear Engineering and Technology
    • /
    • 제45권7호
    • /
    • pp.911-920
    • /
    • 2013
  • Experimental studies on both subcooled and saturated pool boiling of water were performed to obtain local heat transfer coefficients on a $3^{\circ}$ inclined tube of 50.8 mm diameter at atmospheric pressure. The local values were determined at every $45^{\circ}$ from the very bottom to the uppermost of the tube periphery. The maximum and minimum local coefficients were observed at the azimuthal angles of $0^{\circ}$ and $180^{\circ}$, respectively, in saturated water. The locations of the maxima and the minima were dependent on the inclination angle of the tube as well as the degree of subcooling. The major heat transfer mechanisms were considered to be liquid agitation generated by the sliding bubbles and the creation of big size bubbles through bubble coalescence. As a way of quantifying the heat transfer coefficients, an empirical correlation was suggested.

Surface Texturing에 의한 유압부품의 마찰저감 (Surface Texturing in Hydraulic Machine Components for Friction Reduction)

  • 박태조;김민규
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.