DOI QR코드

DOI QR Code

Derivation of a 3D Arching Formula for Tunnel Excavation in Anisotropic Ground Conditions and Examination of Its Effects

비등방 지반에서 터널굴착을 위한 3차원 아칭식의 유도 및 그 영향 조사

  • Received : 2018.08.16
  • Accepted : 2018.12.04
  • Published : 2018.12.31

Abstract

Terzaghi proposed a 2D formula for arching based on the assumption of a vertical sliding surface induced in the upper part due to the downward movement of a trapdoor. The formula was later expanded to consider 3D tunnel excavation conditions under inclined sliding surfaces. This study further extends the expanded formula to consider the effects of different ground properties and inclined sliding conditions in the transverse and longitudinal directions considering anisotropic ground conditions, as well as 3D tunnel excavation conditions. The 3D formula proposed in this study was examined of the induced vertical stress under various conditions (ground property, inclined sliding surface, excavation condition, surcharge pressure, earth pressure coefficient) and compared with the 2D Terzaghi formula. The examination indicated that the induced vertical stress increased as the excavation width and length increased, the inclination angle increased, the cohesion and friction angle decreased, the earth pressure coefficient decreased, and the surcharge pressure increased. Under the conditions examined, the stress was more affected at low excavation lengths and by the ground properties in the transverse direction. In addition, The comparison with the 2D Terzaghi formula showed that the induced vertical stress was lower and the difference was highly affected by the ground properties, inclined sliding conditions, and 3D tunnel excavation conditions. The proposed 3D arching formula could help to provide better understanding of complex arching phenomena in tunnel construction.

테르쟈기는 트랩도어 처짐에 기반한 상부지반의 수직활동면을 가정한 2차원 아칭식을 제안하였다. 이후 관련 식은 3차원 터널굴착조건과 경사활동면을 고려할 수 있도록 확장되었다. 본 연구에서는 3차원 터널굴착조건에서 비등방지반조건을 반영하여 터널 횡방향 및 종방향에서의 지반물성치 및 활동면의 경사각을 달리하여 고려할 수 있도록 더욱 확장된 아칭식을 유도하고 제시하였다. 제시된 식을 이용하여 다양한 조건(지반물성치, 경사활동면, 굴착조건, 상재하중, 토압계수)에서 발생되는 수직응력에 대해 조사하였고 테르쟈기의 2차원 아칭식과도 비교하였다. 조사결과, 발생 수직응력은 굴착폭 및 굴착길이, 경사각, 상재하중이 증가할수록 증가했고 점착력과 마찰각, 토압계수가 감소할수록 증가하였으며, 굴착길이가 작을 때와 횡방향 지반물성치에 의해서 더 큰 영향을 받는 것으로 나타났다. 또한 테르쟈기 2차원 아칭식과 비교하여 발생 수직응력은 더 작은 것으로 나타났고 그 차이정도는 지반물성치, 경사활동면, 3차원 터널굴착 조건에 따라 매우 큰 영향을 받는 것으로 나타났다. 제시된 3차원 아칭식은 터널굴착으로 인한 복잡한 아칭현상을 보다 잘 이해하는데 도움을 줄 수 있을 것으로 판단된다.

Keywords

GJBGC4_2018_v34n12_19_f0001.png 이미지

Fig. 1. Diagram illustrating the assumptions for computing pressure between two vertical sliding surfaces

GJBGC4_2018_v34n12_19_f0002.png 이미지

Fig. 2. Schematic of load transfer (arching) in 3D tunnel excavation conditions

GJBGC4_2018_v34n12_19_f0003.png 이미지

Fig. 3. Diagram illustrating assumptions for computing pressure in 3D excavation conditions with inclined sliding surfaces at angles of α1 and α2

GJBGC4_2018_v34n12_19_f0004.png 이미지

Fig. 4. Comparison with experimental test results

GJBGC4_2018_v34n12_19_f0005.png 이미지

Fig. 5. Effect of excavation width (2B) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2) (H=20m, γ=18kN/m3, c1=c2=0, ϕ12=35°, q=0, K1=K2=1)

GJBGC4_2018_v34n12_19_f0006.png 이미지

Fig. 6. Effect of excavation depth (H) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2) (2B=6m, γ=18kN/m3, c1=c2=0, ϕ12=35°, q=0, K1=K2=1)

GJBGC4_2018_v34n12_19_f0007.png 이미지

Fig. 7. Effect of cohesion (c) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2)

GJBGC4_2018_v34n12_19_f0008.png 이미지

Fig. 8. Effect of friction angle (ϕ) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2)

GJBGC4_2018_v34n12_19_f0009.png 이미지

Fig. 9. Effect of earth pressure coefficient (K) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2)

GJBGC4_2018_v34n12_19_f0010.png 이미지

Fig. 10. Effect of surcharge pressure (q) and longitudinal excavation length (2L, L=half excavation length) under varying inclination angles (α1 and α2)

References

  1. Adachi, T., Kimura, M., and Kishida, K. (2003), "Experimental Study on the Distribution of Earth Pressure and Surface Settlement through Three-dimensional Trapdoor Tests", Tunnelling and Underground Space Technology, Vol.18(2-3).
  2. Adachi, T., Kimura, M., Kishida, K., Kosaka, K., and Sakayama, Y. (1999), "The Mechanical behavior of Tunnel Interaction through Three Dimensional Trapdoor Tests (in Japanese)", J. Geotech. Eng., JSCE 638/III-49, pp.285-299.
  3. Ahmadi, A. and Hosseininia, E.S. (2013), "An Experimental Investigating the Width and Height of a Stable Arch Formed in Granular Materials by Using a New Developed Trapdoor Apparatus", Conf. on International Civil, Structural and Environmental Engineering ACSEE, Zurich, Switzerland, pp.20-24.
  4. Bierbaumer, A. (1913), Die Dimensionierung des Tunnelmauerwerkes, Leipzig, W. Engelmann.
  5. Cain, W. (1916), Earth Pressure, Retaining Walls and Bins. New York, John Wiley & Sons, Inc.
  6. Caquot, A. (1934), Equilibre des Massifs Ii Frottement Interne, Paris, GauthierVillard.
  7. Chau, H.Y. and Bolton, M.D. (2006), "The Use of Centrifuge Tests in the Study of Arching", Physical modeling in geotechnics-6 th ICPMG'06, pp.1075-1080.
  8. Chen, R.P., Huang, W.Y., and Tseng, C.T. (2011), "Stress Redistribution and Ground Arch Development During Tunneling", Tunneling and Underground Space Technology, Vol.26, pp.228-235. https://doi.org/10.1016/j.tust.2010.06.012
  9. Chevalier, B., Combe, G., and Villard, P. (2012), "Experimental and Discrete Element Modeling Studies of the Trapdoor Problem: Influence of the Macro-mechanical Frictional Parameters", Acta Geotechnica, Vol.7(1), pp.15-39. https://doi.org/10.1007/s11440-011-0152-5
  10. Chevalier, B. and Otani, J. (2010), "3-D Arching Effect in the Trap-Door Problem: A Comparison between X-Ray CT Scanning and DEM Analysis", Proc., GeoFlorida 2010, pp.570-579.
  11. Costa, Y.D., Zornberg, J.G., Bueno, B.S., and Costa, C.L. (2009), "Failure Mechanism in Sand Over a Deep Active Trapdoor", J. of Geotech. Geoenviron. Engr., Vol.135(11), pp.1741-1753. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000134
  12. Engesser, F. (1882), "Uber den Erddruck Gegen Innere Stutzwande", Deutsche Bauzeitung, Vol.16, pp.91-93.
  13. Evans, C. H. (1983). An examination of arching in granular soils, S.M. thesis, MIT, Cambridge, MA.
  14. Falaknaz, N., Aubertin, M., and Li, L. (2015), "Numerical Investigation of the Geomechanical Response of Adjacent Backfilled Stopes", Canadian Geotecchnical Journal, Vol.52(10), pp.1507-1525. https://doi.org/10.1139/cgj-2014-0056
  15. Getzler, Z., Gellert, M., and Eitan, R. (1970), "Analysis of Arching Pressures in Ideal Elastic Soil", J. of the Soil Mechanics and Foundations Division, ASCE, Vol.96, No.SM4, pp.1357-1372.
  16. Iglesia, G.R., Einstein, H.H., and Whitman, R.V. (2014), "Investigation of Soil Arching with Centrifuge Tests", J. Geotech. Geoenviron. Eng., Vol.140(2), pp.1-13. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000996
  17. Koutsabeloulis, N.C. and Griffiths, D.V. (1989), "Numerical Modeling of the Trapdoor Problem", Geotechnique, Vol.39, No.1, pp.77-89. https://doi.org/10.1680/geot.1989.39.1.77
  18. Ladanyi, B. and Hoyaux, B. (1969), "A Study of the Trapdoor Problem in a Granular Mass", Canadian Geotechnical Journal, Vol.6(1), pp.1-15, DOI: 10.1139/t69-001.
  19. Lee, Y-J and Lee, S-D (2010), "Longitudinal Arching Effect of an Under-passing Tunnel on the Existing Tunnel Undergoing a Load of Upper Structures", J. of Korean Tunnelling and Underground Space Assoc., Vol.12(6), pp.417-427.
  20. Li, L., Aubertin, M., and Belem, T. (2005), "Formulation of a Three Dimensional Analytical Solution to Evaluate Stresses in Backfilled Vertical Narrow Openings", Canadian Geotechnical Journal, Vol. 42(6), pp.1705-1717. https://doi.org/10.1139/t05-084
  21. Li, L., Dube, J., and Aubertin, M. (2013), "An Extension of Marston's Solution for the Stresses in Backfilled Trenches with Inclined Walls", Canadian Geotechnical Journal, Vol.42(6), pp.1705-1717. https://doi.org/10.1139/t05-084
  22. Marston, A. (1930), "The theory of external loads on closed conduits in the light of the latest experiments", Bulletin 96, Iowa State University Engineering Experiment Station, Ames, Iowa.
  23. McNulty, J.W. (1965), An Experimental Study of Arching in Sand, Ph.D. Thesis in Civil Engineering, University of Illinois.
  24. Nielson, F.D. (1966), Soil structure arching analysis of buried flexible structures, PhD Thesis, University of Arizona, faculty of Civil Engineering.
  25. Nunes, M.A. and Meguid, M.A. (2009), "A Study on the Effects of Overlying Soil Strata on the Stresses Developing in a Tunnel", Tunnelling and Underground Space Technology, Vol.24, pp.716-722. https://doi.org/10.1016/j.tust.2009.04.002
  26. Ono, K. and Yamada, M. (1993), "Analysis of Arching Action in Granular Mass", Geotechnique, Vol.43(1), pp.105-120. https://doi.org/10.1680/geot.1993.43.1.105
  27. Paikowsky, S.G., DiRocco, K.J., and Xi, F. (1993), "Interparticle Contact Force Analysis and Measurements Using Photoelastic Techniques", 2nd International Conference on Discrete Element Methods, MIT, Cambridge, Massachusetts, pp.449-461.
  28. Paikowsky, S.G. and Hsienjen, S.T. (2002), "Experimental Examination of the Arching Effect Mechanism on the Micro Level", Proceeding of 3thInternational DEM conference, New Mexico, pp. 222-228.
  29. Pardo, G.S. and Saez, E. (2014), "Experimental and Numerical Study of Arching Soil Effect in Coarse Sand", Computers and Geotechnics, Vol.57, pp.75-84. https://doi.org/10.1016/j.compgeo.2014.01.005
  30. Pirapakaran, K. and Sivakugan, N. (2007), "Arching Within Hydraulic Fill Stopes", Getech. Gelo. Eng., Vol.25, pp.25-35. https://doi.org/10.1007/s10706-006-0003-6
  31. Sakaguchi, H. and Ozaki, E. (1992), "Analysis of the Formation of Arches Plugging the Flow of Granular Materials", Proceedings of the 2nd International Conference on Discrete Element Method, MIT, Cambridge, Massachusetts, pp.153-163.
  32. Santichaianaint, K. (2002), Centrifuge modelling and analysis of active trapdoor in sand, Ph.D. thesis, Univ. of Colorado at Boulder.
  33. Sardrekarimi, J. and Abbasnejad, A.R. (2010), "Arching Effect in Fine Sand due to base Yielding", Canadian Geotechnical Journal, Vol.47(3), pp.366-374, DOI: 10.1139/T09-107.
  34. Singh, S., Shukla, S.K., and Sivakugan, N. (2011), "Arching in Inclined and Vertical Mine Dtopes", Geotech. Geol. Eng., Vol.29, pp.685-693. https://doi.org/10.1007/s10706-011-9410-4
  35. Sivakugan, N., Widisinghe, S., and Wang, V.Z. (2014), "Vertical Stress Determination Within Backfilled Mine Stopes", Int. J. of Geo. Mech., Vol.14, No.5, pp.1-5.
  36. Spangler, M.G. and Handy, R.L. (1982), "Loads on Underground Conduits", Soil Engineering, New York, pp.727-763.
  37. Son, M. (2017), "Three-Dimensional Expansion of the Terzaghi Arching Formula Considering Inclined Sliding Surfaces and Examination of Its Effects", International journal of geomechanics, Vol. 17(7), pp. 06016043: 1-8.
  38. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley and Sons, New York.
  39. Vardoulakis, I., Graf, B., and Gudehus, G. (1981), "Trap-door Problem with Dry Sand: A Statical Approach based Upon Model Test Kinematics", International journal for numerical and analytical methods in geomechanis, Vol.5(1), pp.57-78. https://doi.org/10.1002/nag.1610050106
  40. Vollmy, A. (1937), Eingebettete Rohre. Mitt. Inst. Baustatik, Eidgen. Tech. Hochschule, Zurich, Mitt. No.9.
  41. Vorster, T. E. B. (2005), The effects of tunnelling on buried pipes, PhD thesis, Engineering Department, Cambridge University.
  42. Yim, I-J and Lee, S-D (2017), "Experimental Study on the Ground Arching Depending on the Deformation Type of the Crown in the Shallow Tunnel", J. of Korean Tunnelling and Underground Space Assoc., Vol.19(5), pp.733-747. https://doi.org/10.9711/KTAJ.2017.19.5.733