• Title/Summary/Keyword: Inception Layer

Search Result 20, Processing Time 0.025 seconds

A study on evaluation method of NIDS datasets in closed military network (군 폐쇄망 환경에서의 모의 네트워크 데이터 셋 평가 방법 연구)

  • Park, Yong-bin;Shin, Sung-uk;Lee, In-sup
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.121-130
    • /
    • 2020
  • This paper suggests evaluating the military closed network data as an image which is generated by Generative Adversarial Network (GAN), applying an image evaluation method such as the InceptionV3 model-based Inception Score (IS) and Frechet Inception Distance (FID). We employed the famous image classification models instead of the InceptionV3, added layers to those models, and converted the network data to an image in diverse ways. Experimental results show that the Densenet121 model with one added Dense Layer achieves the best performance in data converted using the arctangent algorithm and 8 * 8 size of the image.

Analysis of Partial Discharge Inception Voltages for the Wrong Positioning Defects in the Joint of Distribution Power Cables

  • Kim, Jeong-Tae;Kim, Dong-Uk;Lee, Young-Jo;Koo, Ja-Yoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.977-982
    • /
    • 2012
  • In order to find out partial discharge (PD) phenomena in the cable joint due to the poor workmanship during the installation, the relationship between PD inception voltages and joint defects was investigated. For the purpose, in the joint of 22.9kV CNCV cables, electric fields were calculated for various semiconductive layer wrong positioning (WP) defects. And, PDIV were investigated through the experiments and compared with the results of electric field analysis. In all WP defect cases, the PD inception field calculated using measured PDIVs was similarly shown to be the average value of 1.84kV/mm. In addition, the calculated PDIV and the measured PDIV were almost equal, from the PDIV calculation using maximum electric fields and the measured PDIV for the normal case. Throughout this study, it is possible to analyze WP defects due to the poor workmanship and to establish better joint design for the distribution grade extruded cable system.

Facial Age Estimation Using Convolutional Neural Networks Based on Inception Modules (인셉션 모듈 기반 컨볼루션 신경망을 이용한 얼굴 연령 예측)

  • Sukh-Erdene, Bolortuya;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1224-1231
    • /
    • 2018
  • Automatic age estimation has been used in many social network applications, practical commercial applications, and human-computer interaction visual-surveillance biometrics. However, it has rarely been explored. In this paper, we propose an automatic age estimation system, which includes face detection and convolutional deep learning based on an inception module. The latter is a 22-layer-deep network that serves as the particular category of the inception design. To evaluate the proposed approach, we use 4,000 images of eight different age groups from the Adience age dataset. k-fold cross-validation (k = 5) is applied. A comparison of the performance of the proposed work and recent related methods is presented. The results show that the proposed method significantly outperforms existing methods in terms of the exact accuracy and off-by-one accuracy. The off-by-one accuracy is when the result is off by one adjacent age label to the above or below. For the exact accuracy, the age label of "60+" is classified with the highest accuracy of 76%.

Advanced PersonNet for Person Re-Identification (사람 재인식을 위한 개선된 PersonNet)

  • Park, Seong-Hyeon;Kang, Seok-Hoon
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1166-1174
    • /
    • 2019
  • This paper propose and experiment advanced PersonNet, a human identification model, with advanced performance. We apply the inception layer to extract feature points, and increase the existing 32 feature points to 154. Also, we modify the CND method used by PersonNet to mitigate asymmetry, and apply weights to the feature map of pedestrian images in three parts, thereby making the features more distinct. Three databases were used for performance evaluation : CUHK01, CUHK03 and Market-1501. The experiment results showed 27-31% improvement in performance.

A Deep Neural Network Architecture for Real-Time Semantic Segmentation on Embedded Board (임베디드 보드에서 실시간 의미론적 분할을 위한 심층 신경망 구조)

  • Lee, Junyeop;Lee, Youngwan
    • Journal of KIISE
    • /
    • v.45 no.1
    • /
    • pp.94-98
    • /
    • 2018
  • We propose Wide Inception ResNet (WIR Net) an optimized neural network architecture as a real-time semantic segmentation method for autonomous driving. The neural network architecture consists of an encoder that extracts features by applying a residual connection and inception module, and a decoder that increases the resolution by using transposed convolution and a low layer feature map. We also improved the performance by applying an ELU activation function and optimized the neural network by reducing the number of layers and increasing the number of filters. The performance evaluations used an NVIDIA Geforce GTX 1080 and TX1 boards to assess the class and category IoU for cityscapes data in the driving environment. The experimental results show that the accuracy of class IoU 53.4, category IoU 81.8 and the execution speed of $640{\times}360$, $720{\times}480$ resolution image processing 17.8fps and 13.0fps on TX1 board.

Classification of Raccoon dog and Raccoon with Transfer Learning and Data Augmentation (전이 학습과 데이터 증강을 이용한 너구리와 라쿤 분류)

  • Dong-Min Park;Yeong-Seok Jo;Seokwon Yeom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.1
    • /
    • pp.34-41
    • /
    • 2023
  • In recent years, as the range of human activities has increased, the introduction of alien species has become frequent. Among them, raccoons have been designated as harmful animals since 2020. Raccoons are similar in size and shape to raccoon dogs, so they generally need to be distinguished in capturing them. To solve this problem, we use VGG19, ResNet152V2, InceptionV3, InceptionResNet and NASNet, which are CNN deep learning models specialized for image classification. The parameters to be used for learning are pre-trained with a large amount of data, ImageNet. In order to classify the raccoon and raccoon dog datasets as outward features of animals, the image was converted to grayscale and brightness was normalized. Augmentation methods were applied using left and right inversion, rotation, scaling, and shift to create sufficient data for transfer learning. The FCL consists of 1 layer for the non-augmented dataset while 4 layers for the augmented dataset. Comparing the accuracy of various augmented datasets, the performance increased as more augmentation methods were applied.

Breast Cancer Histopathological Image Classification Based on Deep Neural Network with Pre-Trained Model Architecture (사전훈련된 모델구조를 이용한 심층신경망 기반 유방암 조직병리학적 이미지 분류)

  • Mudeng, Vicky;Lee, Eonjin;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.399-401
    • /
    • 2022
  • A definitive diagnosis to classify the breast malignancy status may be achieved by microscopic analysis using surgical open biopsy. However, this procedure requires experts in the specializing of histopathological image analysis directing to time-consuming and high cost. To overcome these issues, deep learning is considered practically efficient to categorize breast cancer into benign and malignant from histopathological images in order to assist pathologists. This study presents a pre-trained convolutional neural network model architecture with a 100% fine-tuning scheme and Adagrad optimizer to classify the breast cancer histopathological images into benign and malignant using a 40× magnification BreaKHis dataset. The pre-trained architecture was constructed using the InceptionResNetV2 model to generate a modified InceptionResNetV2 by substituting the last layer with dense and dropout layers. The results by demonstrating training loss of 0.25%, training accuracy of 99.96%, validation loss of 3.10%, validation accuracy of 99.41%, test loss of 8.46%, and test accuracy of 98.75% indicated that the modified InceptionResNetV2 model is reliable to predict the breast malignancy type from histopathological images. Future works are necessary to focus on k-fold cross-validation, optimizer, model, hyperparameter optimization, and classification on 100×, 200×, and 400× magnification.

  • PDF

Evaluation of the MgO Protective Layer Deposited by Oxygen Ion-Beam-Assisted-Deposition Method in ac PDPs

  • Li, Zhao-Hui;Cho, Eou-Sik;Hong, Seong-Jae;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1372-1375
    • /
    • 2007
  • MgO thin films were deposited by $O^+$ IBAD method and results showed assisting oxygen ion beam energy plays a significant role in characteristics of MgO thin films. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when oxygen ion beam energy was 300 eV.

  • PDF

Humidity Dependence Removal Technology in Oxide Semiconductor Gas Sensors (산화물 반도체 가스 센서의 습도 의존성 제거 기술)

  • Jiho Park;Ji-Wook Yoon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.347-357
    • /
    • 2024
  • Oxide semiconductor gas sensors are widely used for detecting toxic, explosive, and flammable gases due to their simple structure, cost-effectiveness, and potential integration into compact devices. However, their reliable gas detection is hindered by a longstanding issue known as humidity dependence, wherein the sensor resistance and gas response change significantly in the presence of moisture. This problem has persisted since the inception of oxide semiconductor gas sensors in the 1960s. This paper explores the root causes of humidity dependence in oxide semiconductor gas sensors and presents strategies to address this challenge. Mitigation strategies include functionalizing the gas-sensing material with noble metal/transition metal oxides and rare-earth/rare-earth oxides, as well as implementing a moisture barrier layer to prevent moisture diffusion into the gas-sensing film. Developing oxide semiconductor gas sensors immune to humidity dependence is expected to yield substantial socioeconomic benefits by enabling medical diagnosis, food quality assessment, environmental monitoring, and sensor network establishment.

Design of The Electrical Insulation for The High Temperature Superconducting Cable Based on Model Investigation

  • A.M Andreev;Kim, Ji-Hwan;Kim, Do-Woon;Jang, Hyun-Man;Kim, Dong-Wook;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.3
    • /
    • pp.52-56
    • /
    • 2003
  • This paper describes the results of a basic study (on a model samples) for the development of 22.9 kV high temperature superconducting (HTS) cable. The authors have established that the factors that decide the performance of HTS cables are butt gaps in tape insulation and carbon particles from semiconductive layer. The insulation performance of HTS cables is determined by size and quality of these elements. In the model tests of HTS cables, the minimum PD inception stress of the tape insulation impregnated with liquid nitrogen was found and insulation thickness was calculated from this result.