• 제목/요약/키워드: InGaZnO

검색결과 510건 처리시간 0.029초

Changes in Electrical and Optical Properties and Chemical States of the Amorphous In-Ga-Zn-O Thin Films Depending on Growth Temperature

  • Yoo, Han-Byeol;Thakur, Anup;Kang, Se-Jun;Baik, Jae-Yoon;Lee, Ik-Jae;Park, Jae-Hun;Kim, Ki-Jeong;Kim, Bong-Soo;Shin, Hyun-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.346-346
    • /
    • 2012
  • We investigated electrical and optical properties and chemical states of amorphous In-Ga-Zn-O (a-IGZO) thin films deposited at different substrate temperatures (from room temperature to $300^{\circ}C$). a-IGZO thin films were fabricated by radio frequency magnetron sputtering using $In_2O_3$ : $Ga_2O_3$ : ZnO = 1 : 1 : 1 target, and their electrical and optical properties and chemical states were investigated by Hall-measurement, UV-visible spectroscopy and x-ray photoelectron spectroscopy (XPS), respectively. The data showed that as substrate temperature increased, carrier concentration increased, but mobility, conductivity, transmittance in the shorter wavelength region (>350 nm), and the Tauc-plot-estimated optical bandgap decreased. XPS data indicated that the intensity of In 3d peak compared to Ga 3d peak increased but the intensity of Zn 3d peak compared to Ga 3d decreased, and that, from the deconvoluted O 1s peak, defects or oxygen vacancies and non-quaternary contents increased as the temperature increased. The relative intensity changes of the In, Zn, and O 1s sub-component are suggested to explain the changes in electrical and optical properties.

  • PDF

Local structure of transparent flexible amorphous M-In-ZnO semiconductor

  • Son, L.S.;Kim, K.R.;Yang, D.S.;Lee, J.C.;Sung, N.;Lee, J.;Kang, H.J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.164-164
    • /
    • 2010
  • The impurity doped ZnO has been extensively studied because of its optoelectric properties. GIZO (Ga-In-Zn-O) amorphous oxide semiconductors has been widely used as transparent flexible semiconductor material. Recently, various amorphous transparent semiconductors such as IZO (In-Zn-O), GIZO, and HIZO (Hf-In-Zn-O) were developed. In this work, we examined the local structures of IZO, GIZO, and HIZO. The local coordination structure was investigated by the extended X-ray absorption fine structure. The IZO, GIZO and HIZO thin films ware deposited on the glass substrate with thickness of 400nm by the radio frequency sputtering method. The targets were prepared by the mixture of $In_2O_3$, ZnO and $HfO_2$ powders. The percent ratio of In:Zn in IZO, Ga:In:Zn in GIZO and Hf:In:Zn in HIZO was 45:55, 33:33:33 and 10:35:55, respectively. In this work, we found that IZO, GIZO and HIZO are all amorphous and have a similar local structure. Also, we obtained the bond distances of $d_{Ga-O}=1.85\;{\AA}$, $d_{Zn-O}=1.98\;{\AA}$, $d_{Hf-O}=2.08\;{\AA}$, $d_{In-O}=2.13\;{\AA}$.

  • PDF

전기방사로 합성된 산화물 나노섬유의 조성 및 결정화도에 따른 (Ga1-xZnx)(N1-xOx) 나노섬유의 형상 제어 연구 (A Study on Morphology Control of (Ga1-xZnx)(N1-xOx) Nanofibers according to the Composition and Crystallinity of Oxide Nanofibers Synthesized by Electrospinning)

  • 김정현;오승탁;이영인
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.259-266
    • /
    • 2021
  • The (Ga1-xZnx)(N1-xOx) solid solution is attracting extensive attention for photocatalytic water splitting and wastewater treatment owing to its narrow and controllable band gap. To optimize the photocatalytic performance of the solid solution, the key points are to decrease its band gap and recombination rate. In this study, (Ga1-xZnx)(N1-xOx) nanofibers with various Zn fractions are prepared by electrospinning followed by calcination and nitridation. The effect of the composition and crystallinity of electrospun oxide nanofibers on the morphology and optical properties of the obtained solid-solution nanofibers are systematically investigated. The results show that the final shape of the (Ga1-xZnx) (N1-xOx) material is greatly affected by the crystallinity of the oxide nanofibers before nitridation. The photocatalytic properties of (Ga1-xZnx)(N1-xOx) with different Ga:Zn atomic ratios are investigated by studying the degradation of rhodamine B under visible light irradiation.

RF 마그네트론 스퍼트링에 의한 Ga 와 Ge가 도핑된 ZnO 박막 특성의 온도효과 (Effects of Substrate Temperature on Properties of (Ga,Ge)-Codoped ZnO Thin Films Prepared by RF Magnetron Sputtering)

  • 정일현
    • 한국전기전자재료학회논문지
    • /
    • 제24권7호
    • /
    • pp.584-588
    • /
    • 2011
  • The ZnO thin films doped with Ga and Ge (GZO:Ge) were prepared on glass substrate using RF sputtering system. Structural, morphological and optical properties of the films deposited in different temperatures were studied. Proportion of the element of using target was 97 wt% ZnO, 2.5 wt% Ga and 0.5 wt% Ge with 99.99% highly purity. Structural properties of the samples deposited in different temperatures with 200 w RF power were investigated by field emission scanning electron microscopy, FE-SEM images and x-ray diffraction XRD analysis. Atomic force microscopy, AFM images were able to show the grain scales and surface roughness of each film rather clearly than SEM images. it was showed that increasing temperature have better surface smoothness by FE-SEM and AFM images. Transmittance study using UV-Vis spectrometer showed that all the samples have highly transparent in visible region (300~800 nm). In addition, it can be able to calculate bandgap energy from absorbance data obtained with transmittance. The hall resistivity, mobility, and optical band gap energy are influenced by the temperature.

Zn-Sn-O비정질 산화물 반도체 박막의 Ga 첨가 영향

  • 김혜리;송풍근;김동호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.61.2-61.2
    • /
    • 2011
  • 넓은 밴드갭을 가지고 있어 가시광에서 투명하며 높은 이동도를 가진 산화물 반도체는 기존의 Si 기반 TFT 소자를 대체할 차세대 디스플레이의 핵심 소재기술로 관심이 높아지고 있다. 그러나 대표적인 산화물 반도체인 In-Ga-Zn-O (IGZO)에 포함된 인듐의 수요 증가에 따른 가격 급등 문제로 이를 대체할 수 있는 새로운 산화물 반도체 재료에 대한 연구의 필요성이 대두되고 있다. 이에 비교적 저가의 물질로 구성된 Zn-Sn-O계 산화물 소재에 대한 연구가 진행된 바 있으나, 높은 수준의 캐리어 농도를 가지고 있어 TFT 채널용 반도체소재로 적용되기 위해서는 이를 $10^{17}\;cm^{-3}$ 이하로 조절할 수 있는 기술개발이 요구된다. 본 연구는 마그네트론 스퍼터링법을 이용하여 증착된 Ga-Zn-Sn-O (GZTO) 박막의 갈륨 첨가에 따른 특성변화를 조사하였다. GZO ($Ga_2O_3$ 5wt%)와 $SnO_2$ 타켓의 인가 파워를 고정한 상태에서 $Ga_2O_3$ 타켓의 인가 파워를 0~100W로 조절하여 박막 내 Ga 함량을 증가시켰다. 제조된 모든 GZTO 박막은 Ga함량에 관계없이 비정질 구조를 가지며 가시광 영역에서 약 78%의 우수한 투과율을 나타낸다. Ga 함량에 따라 박막의 구조적, 광학적 특성은 크게 변하지 않지만 전기적 특성은 뚜렷한 변화를 나타냈다. $Ga_2O_3$ 파워가 증가할수록 박막 내 캐리어 농도와 이동도의 감소로 비저항이 크게 증가하는데 특히 캐리어 농도는 $Ga_2O_3$ 파워가 0에서 100W로 증가할 때 $2{\times}10^{18}$에서 $8{\times}10^{14}\;cm^{-3}$으로 감소하였다. 이는 Ga-O의 화학적 결합 에너지가 다른 원소들(Zn 또는 In)에 비해 커서 박막 내 산소공공의 감소가 야기되었기 때문이다. 이러한 전기물성의 변화를 이해하기 위해 XPS 분석을 수행하였다. 제조된 GZTO 박막은 $Ga_2O_3$ 파워가 증가함에 따라 O 1s peak에서 산소공공과 관련된 530.8 eV peak의 intensity가 감소한다. 따라서 Ga을 첨가에 따른 캐리어 농도의 감소는 산소공공의 발생억제로 기인한 것으로 판단되며, 본 연구결과는 ZTO계 비정질 산화물 반도체의 활용가능성을 제시하였다.

  • PDF

RF Sputtering으로 증착한 어닐링 온도 변화에 따른 Ga-doped ZnO 박막 특성 연구 (A Study on Properties of Ga-doped ZnO Thin Films for Annealing Temperature Change by RF Sputtering Method)

  • 한승익;김홍배
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.11-15
    • /
    • 2016
  • This paper, Ga-doped ZnO (GZO) thin films which were deposited on Corning glass substrate using an magnetron sputtering deposition technology and then the post deposition annealing process was conducted for 30 minutes at different temperature of 100, 200, 300, and $400^{\circ}C$, respectively. So as to investigate the properties for the relevant the Concentration and Oxygen Vacancy with Annealing temperature of Ga-doped ZnO thin films by RF Sputtering method. The Carrier concentration is enhanced as annealing temperature decreases, and also the oxygen vacancy concentration is enhanced as annealing temperature decreased. Oxygen vacancy will decrease along with Carrier concentration. This change in Carrier concentration is related to changes in oxygen vacancy concentration. The figure of merit obtained in this study means that Ga-doped ZnO films which annealed at $400^{\circ}C$ have the lowest Carrier concentration and Oxygen vacancy, which have the highest optoelectrical performance that it could be used as a transparent electrode.

Fabrication and characterization of Zn-O-Ga structures by RF magnetron co-sputtering method

  • 황창수;박인철;김홍배
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.201-201
    • /
    • 2010
  • 본 연구에서는 RF magnetron co-sputtering을 이용하여 Zn-O-Ga 구성비에 따른 광투과도 및 전기적 특성을 연구하였다. 타겟으로 ZnO 및 $Ga_2O_3$ 소결체를 이용하였으며, 두 개의 RF magnetron sputter의 RF power를 동시에 조절하여 타겟의 구성비를 조절하였으며, 기판과 타겟의 거리를 25 mm~75 mm 범위 내에 조절하여 거리에 따른 Zn-O-Ga 박막의 광투과 특성 및 전기적 특성을 관찰하였다. $Ga_2O_3$ 소결체의 magnetron sputter의 RF power를 30 watt에서 100 watt로 증가함에 따라 박막내의 Ga 성분은 0.5%에서 7.4%로 증가하였으며 Zn 성분은 46.3%에서 40.9%로 O성분은 53.2%에서 51.6%로 각각 줄어들었다. 이에 따라 ZnO의 우선방위 (002) 결정각($2{\theta}$)은 34.24에서 33.87로 줄어들었으며, 이동도 $5.5\;cm^2/Vs$ 에서 $1.99\;cm^2/Vs$ 정도로 감소하는 경향을 보였다. 광투과도는 가시광선 영역에서 85% 이상 보였으며, carrier 밀도는 $0.5\;{\sim}\;4.0^*10^{20}/cm^3$로 증가함에 따라 이동도는 $1.5{\sim}5.5\;cm^2/Vs$로 투명전도막의 특성을 보였다.

  • PDF

초음파 분무 열분해와 화학적 변환 공정을 이용한 (GaN)1-x(ZnO)x 나노입자의 합성과 광학적 성질 (Synthesis and Optical Property of (GaN)1-x(ZnO)x Nanoparticles Using an Ultrasonic Spray Pyrolysis Process and Subsequent Chemical Transformation)

  • 김정현;류철희;지명준;최요민;이영인
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.143-149
    • /
    • 2021
  • In this study, (GaN)1-x(ZnO)x solid solution nanoparticles with a high zinc content are prepared by ultrasonic spray pyrolysis and subsequent nitridation. The structure and morphology of the samples are investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The characterization results show a phase transition from the Zn and Ga-based oxides (ZnO or ZnGa2O4) to a (GaN)1-x(ZnO)x solid solution under an NH3 atmosphere. The effect of the precursor solution concentration and nitridation temperature on the final products are systematically investigated to obtain (GaN)1-x(ZnO)x nanoparticles with a high Zn concentration. It is confirmed that the powder synthesized from the solution in which the ratio of Zn and Ga was set to 0.8:0.2, as the initial precursor composition was composed of about 0.8-mole fraction of Zn, similar to the initially set one, through nitriding treatment at 700℃. Besides, the synthesized nanoparticles exhibited the typical XRD pattern of (GaN)1-x(ZnO)x, and a strong absorption of visible light with a bandgap energy of approximately 2.78 eV, confirming their potential use as a hydrogen production photocatalyst.

Defect-related yellowish emission of un doped ZnO/p-GaN:Mg heterojunction light emitting diode

  • Han, W.S.;Kim, Y.Y.;Ahn, C.H.;Cho, H.K.;Kim, H.S.;Lee, J.H.
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.327-327
    • /
    • 2009
  • ZnO with a large band gap (~3.37 eV) and exciton binding energy (~60 meV), is suitable for optoelectronic applications such as ultraviolet (UV) light emitting diodes (LEDs) and detectors. However, the ZnO-based p-n homojunction is not readily available because it is difficult to fabricate reproducible p-type ZnO with high hall concentration and mobility. In order to solve this problem, there have been numerous attempts to develop p-n heterojunction LEDs with ZnO as the n-type layer. The n-ZnO/p-GaN heterostructure is a good candidate for ZnO-based heterojunction LEDs because of their similar physical properties and the reproducible availability of p-type GaN. Especially, the reduced lattice mismatch (~1.8 %) and similar crystal structure result in the advantage of acquiring high performance LED devices. In particular, a number of ZnO films show UV band-edge emission with visible deep-level emission, which is originated from point defects such as oxygen vacancy, oxygen interstitial, zinc interstitial[1]. Thus, defect-related peak positions can be controlled by variation of growth or annealing conditions. In this work, the undoped ZnO film was grown on the p-GaN:Mg film using RF magnetron sputtering method. The undoped ZnO/p-GaN:Mg heterojunctions were annealed in a horizontal tube furnace. The annealing process was performed at $800^{\circ}C$ during 30 to 90 min in air ambient to observe the variation of the defect states in the ZnO film. Photoluminescence measurements were performed in order to confirm the deep-level position of the ZnO film. As a result, the deep-level emission showed orange-red color in the as-deposited film, while the defect-related peak positions of annealed films were shifted to greenish side as increasing annealing time. Furthermore, the electrical resistivity of the ZnO film was decreased after annealing process. The I-V characteristic of the LEDs showed nonlinear and rectifying behavior. The room-temperature electroluminescence (EL) was observed under forward bias. The EL showed a weak white and strong yellowish emission colors (~575 nm) in the undoped ZnO/p-GaN:Mg heterojunctions before and after annealing process, respectively.

  • PDF